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Abstract

For finite strain elastic–perfectly plastic models, the use of non-spinning objective stress rates leads to cubic degree

non-linear differential equations as well as the coupling of deviatoric and volumetric constitutive equations. The

governing equations reduce to quadratic non-linearity and the coupling disappears when spinning objective stress rates

are used. In order to effectively deal with these non-linearities we first convert the non-linear constitutive equations into

a Lie type system, _X ¼ AX, A 2 soð5; 1Þ, for X in the Minkowski spacetime M5þ1, which has an indefinite metric g of

signature (5,1). However, for spinning objective stress rates A merely depends on t through deformation history and the

above equation reduces to a time-varying linear system. The new representation admits a Lie symmetry of the proper

orthochronous Lorentz group SOoð5; 1Þ in the plastic phase. In terms of X, the yield condition is transformed to a null

cone condition XTgX ¼ 0 in M5þ1. Due to this nullity we thus assign a quaternionic Hermitian matrix to represent X,

and convert the six-dimensional system to a more economic lower dimensional quaternionic two-component spinor

system, _a ¼ Qa, Q 2 slð2;HÞ. In the two-dimensional spinor space the Lie symmetry is found to be SLð2;HÞ, the
mapping of which onto SOoð5; 1Þ is derived. In addition to the mapping between soð5; 1Þ and slð2;HÞ, an isomorphic

mapping between slð2;HÞ and su�ð4Þ is also established, the latter of which generates the group SU �ð4Þ. Finally,
according to these Lie symmetries the numerical schemes preserving the group properties are developed, which satisfy

the consistency condition 1 exactly for every time step without iterations at all.
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1. Introduction

A novel formulation for elastoplasticity has been recently developed by Hong and Liu (1999a,b, 2000),

Liu and Hong (2001), Liu (2001a, 2003, in press), and Mukherjee and Liu (2003). These authors have
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1 The consistency means that during the plastic deformation the stress point must remain on the subsequent yield surface.
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explored the internal symmetry groups of the constitutive models for perfect elastoplasticity with or

without considering large rotation, for bilinear elastoplasticity, for visco-elastoplasticity, for isotropic

work-hardening elastoplasticity, as well as for mixed-hardening elastoplasticity to ensure that the plastic

consistency condition is exactly satisfied at each time step once the computational scheme can take these
symmetries into account.

In order to grasp the concepts that this paper needs we employ a small-strain elastic–perfectly plastic

model as a demonstrated example:
2 A

yield s
_sþ G _k
s0y

s ¼ 2G _e; ð1Þ
where _k subjects to the switching criteria
_k ¼
1
s0y
s � _e > 0 if ksk ¼

ffiffiffi
2

p
s0y and s � _e > 0;

0 if ksk <
ffiffiffi
2

p
s0y or s � _e6 0:

(
ð2Þ
As usual s and e are respectively stress and strain deviators, s0y is the shear yield strength, and G is the

shear modulus. While ksk :¼
ffiffiffiffiffiffiffiffi
s � s

p
defines the Euclidean norm of s, and a dot between two same order

tensors denotes their Euclidean inner product, ksk ¼
ffiffiffi
2

p
s0y signifies the yield condition, s � _e > 0 the loading

condition, and s � _e6 0 the unloading condition. Obviously the governing equation for s is non-linear in the

plastic phase.

Let us introduce 2
X ¼ Xs

X 0

� �
¼

X 1

X 2

X 3

X 4

X 5

X 0

26666664

37777775 :¼ X 0

s0y

b1s
11 þ b2s

22

b3s
11 þ b4s

22

s23

s13

s12

s0y

26666664

37777775; ð3Þ
where
X 0 :¼ exp
Gk
s0y

 !
ð4Þ
is an internal time, and
b1 :¼ sin h
�

þ p
3

�
; b2 :¼ sin h; b3 :¼ cos h

�
þ p

3

�
; b4 :¼ cos h ð5Þ
with h being any real number. Then, the model represented by Eqs. (1) and (2) can be transformed into a

time-varying linear system (see, e.g., Hong and Liu, 1997, 2000)
_X ¼ AðtÞX; ð6Þ

where
A ¼ 05 As
0

A0
s 0

� �
if XTgX ¼ 0 and

d

dt
½ðXsÞTXs� > 0; ð7Þ
special case of Eq. (3) with h ¼ 0 can be viewed as the homogeneous coordinates (non-dimensionalized with respect to the tensile

trength
ffiffiffi
3

p
s0y) of the Il�yushin stress space ð3

2
s11,

ffiffi
3

p

2
s11 þ

ffiffiffi
3

p
s22,

ffiffiffi
3

p
s23,

ffiffiffi
3

p
s13,

ffiffiffi
3

p
s12Þ.
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A ¼ 05 As
0

01�5 0

� �
if XTgX < 0 or

d

dt
½ðXsÞTXs�6 0; ð8Þ
in which
g ¼ I5 05�1

01�5 �1

� �
; ð9Þ

ðA0
s Þ

T ¼ As
0 :¼

2G
s0y

b1 _e11 þ b2 _e22
b3 _e11 þ b4 _e22

_e23
_e13
_e12

266664
377775: ð10Þ
05 and I5 denote, respectively, the five-order zero and identity matrices, and the superscript �T� denotes the
transpose.

For the formulation represented by Eqs. (3)–(10) there have several points deserved to point out:

(a) The variable X defined in Eq. (3) that includes the internal time X 0 as temporal component and the
other five independent deviatoric stresses multiplied by X 0=s0y as spatial component, Xs, may be called

augmented stress. The underlying space of X denoted by M5þ1 is called the Minkowski spacetime, whose

metric tensor g as given by Eq. (9) is of signature (5,1).

(b) A deviatoric stress point s on the yield surface ksk ¼
ffiffiffi
2

p
s0y in the Euclidean space E5 corresponds to an

augmented stress point X on the right circular cone fXjXTgX ¼ 0g emanating from X ¼ 0 in the Min-

kowski spacetime M5þ1, while an s within the yield surface corresponds to an X in the interior

fXjXTgX < 0g of the cone. X 2 M5þ1 is called a null vector if it satisfies the cone condition XTgX ¼ 0.

(c) The loading condition s � _e > 0 and the unloading condition s � _e6 0 are changed to d½ðXsÞTXs�=dt > 0
and d½ðXsÞTXs�=dt6 0, respectively.

(d) For the linear system (6), whose A in the plastic phase as given in Eq. (7) satisfies
AT

_G

G

G

gþ gA ¼ 0: ð11Þ

The set of all (5 + 1) · (5 + 1) matrices that satisfy the above relation is denoted by soð5; 1Þ.

(e) A matrix function GðtÞ that satisfies
ðtÞ ¼ AðtÞGðtÞ; ð12Þ

ð0Þ ¼ I6 ð13Þ

with AðtÞ 2 soð5; 1Þ is called a single-parameter Lorentz group. From Eqs. (11)–(13) it follows readily that
TgG ¼ g: ð14Þ
The G if further satisfying
detG ¼ 1; ð15Þ

G0
0 P 1 ð16Þ
is called the proper orthochronous Lorentz group, and is denoted by SOoð5; 1Þ. It is an internal symmetry

group of the small-strain elastic–perfectly plastic model in the plastic phase. In the above det is the

shorthand of determinant and G0
0 is the 00th mixed component of G.

It is known that an element A of the real Lie algebra soð5; 1Þ of the proper orthochronous Lorentz group
SOoð5; 1Þ has the general form:



3 In

tensor
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A ¼
As

s As
0

A0
s 0

� �

with properties:
ðAs
sÞ

T ¼ �As
s; ðA0

s Þ
T ¼ As

0:
But the form of A previously found by Hong and Liu (1997, 2000) as that shown in Eq. (7) for the small-

strain deformation models of elastoplasticity has zero As
s and is, therefore, less general. As shown by Hong

and Liu (1999a) and Liu and Hong (2001), we may generalize the model by including a non-vanishing,

skew-symmetric tensor As
s in A if finite strain deformation and rotation are considered. The original version

presented an extremely simple framework leading to a linear set of differential equations with obvious

advantage for numerical integrations.

In this paper, we extend these works to large deformation constitutive equations with different coro-

tational or non-corotational stress rates reported in the literature, and compare the behavior of these

models under simple shear deformation. The numerical results about the simple shear behavior of the

elastoplastic models with different objective stress rates are shown here for completeness. Some similar

results have been examined and compared by Atluri (1984), Szab�o and Balla (1989) and others. The large

deformation version is not so simple, since it is highly non-linear but would be clear later that our extension
still has many advantages for numerical algorithms.

The objective rates of Kirchhoff stress 3 are summarized by the form s
� ¼ _s� 2½Bs�, where B is assigned

and is function of t through deformation history. For example, the objective stress rates of Truesdell (1955),

Oldroyd (1950), Cotter and Rivlin (1955), Jaumann (1911), Durban and Baruch (1977), Green and Naghdi

(1965), Sowerby and Chu (1984), Szab�o and Balla (1989), and Xiao et al. (1997a,b, 1999) are all of this

form. Due to the appearance of spurious shear oscillatory behavior of hypoelastic models and elastoplastic

models with some objective stress rates, considerable efforts have been made to resolve the problem of

choosing an appropriate objective stress rate in rate-form constitutive equations (see, e.g., Bruhns et al.,
2001; Xiao et al., 2001; Lin, 2003; and references therein). Liu and Hong (1999) have examined the above

ten objective stress rates for the model of hypoelasticity, and obtained two criteria for oscillatory and non-

oscillatory stress response under simple shear deformation. Then, Liu and Hong (2001) used the com-

parison theorem to derive a sufficient criterion for non-oscillatory stress response under simple shear of the

elastoplastic models using corotational stress rates.

Here, we investigate the finite strain models of elastoplasticity by considering the decomposition of

deformation rate with D ¼ De þDp (see, e.g., Neale, 1981; Nemat-Nasser, 1982; Bruhns et al., 1999) and by

employing the above ten objective stress rates on the constitutive equations. We attempt to unify the finite
strain theory from the point view of the Minkowski spacetime and its admissible internal symmetry group.

Furthermore, we also utilize the Lie group and its Lie algebra properties to develop high accuracy and high

efficiency schemes, which can be used to calculate the stress response under different deformation condi-

tions. In the plastic phase the augmented stress, which is a null vector in space M5þ1, can be mathematically

identified to a 2 · 2 quaternionic Hermitian matrix with zero determinant. Then we can develop a qua-

ternion based spinor representation of the six-dimensional proper orthochronous Lorentz group, as well as

a two-component spinor framework for the plasticity theory with finite strain deformation.

As we know the numerical schemes developed up to now for the integration of constitutive equations of
elastoplasticity are executed directly in stress space, for example, the tangent stiffness-radial return method

(see, e.g., Krieg and Krieg, 1977; Schreyer et al., 1979), the radial return method (see, e.g., Krieg and Krieg,

1977; Kobayashi and Ohno, 2002; Lubarda and Benson, 2002; Auricchio and Beir~ao da Veiga, 2003), the
the literature of finite strain plasticity we can find the so-called Kirchhoff stress tensor s ¼ rdetF, where r is the Cauchy stress

, and F the deformation gradient tensor.
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elastic predictor–radial corrector method (see, e.g., Schreyer et al., 1979), the generalized midpoint rule (see,

e.g., Ortiz and Popov, 1985), the closest-point-projection algorithm (see, e.g., Simo and Taylor, 1985), and

also the plastic predictor–elastic corrector method (see, e.g., Nemat-Nasser, 1991). In order to enforce the

consistency condition at every time step the above-mentioned algorithms require some iterative calculations
until stress point at the end of each time step converges to the yield surface (see, e.g., Simo and Hughes,

1998), which is known as a main source of numerical errors and of consumption of computational time. A

numerical scheme which preserves symmetry and utilizes the invariance property will be more capable of

capturing key features during elastoplastic deformation and has long-term stability and much more im-

proved efficiency and accuracy. Therefore the issue of internal symmetries in the constitutive laws of

plasticity is not only important in its own right, but will also find applications to computational plasticity.

In this paper we consider finite strain constitutive models of perfect elastoplasticity with different

objective stress rates in Sections 2 and 3, and manage to put them in a more appropriate setting in Section 4,
such that the internal spacetime structure and the internal symmetries of the models are brought out in

Section 5. Then, taking advantage of the nullity of the introduced augmented stress in plastic phase we

develop a mathematically equivalent quaternionic Hermitian matrix representation in Section 6, which is

suitable to derive the spinor map from SLð2;HÞ onto SOoð5; 1Þ via an extension of Dirac�s method. Some

properties about quaternion algebra H are summarized in Appendix A. In order to precisely derive the

relations of the corresponding time-varying Lie algebras we develop a direct approach to realize the spinor

map in Appendix B, and then the Lie algebras isomorphism in Appendix C. It will be sure that the newly

proposed direct approach is rather crucial to pinpoint the relation between slð2;HÞ and soð5; 1Þ. In addition
to the spinor representation we also develop a SU �ð4Þ group representation in Section 7. Then, by using

these internal symmetries inherent in the constitutive models we develop consistent schemes in Section 8.

One direct benefit of these schemes is that the stress point is exactly updated on the yield surface without

iterative calculations for every time step. This is what the conventional numerical schemes desired and

failed to achieve. Finally, we draw conclusions in Section 9.

As we merely consider the perfectly elastoplastic finite strain effect on material, which can be regarded as

a prototype plastic mechanism indicating what might be achieved by this type finite strain modeling rather

than as a definitive statement about the real material behavior, the other hardening mechanisms and
elastoplastic models are intensively discussed in current research circles with the goal of more closely

representing reality. To achieve comprehensive simulation of material behavior, it is necessary to use more

realistic elastoplastic models taking both finite strain and hardening effects into account. Xiao et al. (2001)

and Bruhns et al. (2001) have extended their self-consistent finite strain models with logarithmic rate to the

kinematic hardening plasticity. Numerical tests with simple shear and torsion show that their models can

obtain satisfactory and reasonable explanation of experimental observation. Although we have investigated

the internal symmetry of small strain Prager kinematic hardening plasticity in Hong and Liu (1999b), and

small strain mixed-hardening plasticity in Liu (in press), it deserves in the future to extend the current study
on finite strain kinematic hardening plasticity and also on other finite strain elastoplastic models.
2. Large deformation constitutive models

The constitutive law of elastoplasticity of solid materials proposed by Prandtl and Reuss can be re-

postulated and enlarged to take account of large deformation as in the following postulations:
D ¼ De þDp; ð17Þ

s
� ¼ 2GDe þ kðtrDÞI3; ð18Þ
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s _k ¼ 2s0yD
p; ð19Þ

ksk6
ffiffiffi
2

p
s0y; ð20Þ

_kP 0; ð21Þ

ksk _k ¼
ffiffiffi
2

p
s0y _k; ð22Þ
where the Lam�e material parameters G and k and the shear yield stress s0y are the only three property

constants needed in the isotropic hypoelastic–perfectly plastic large deformation model. It is postulated that

0 < G < 1, �2G=3 < k < 1 and s0y > 0, and that trDp ¼ 0. We let s denote the Kirchhoff stress and s its

deviatoric part, i.e., s :¼ s� I3ðtrsÞ=3, where tr denotes the trace of the tensor. The bold-faced symbols D,

De and Dp stand for the deformation rate, elastic deformation rate, and plastic deformation rate, respec-

tively, all being symmetric tensors, whereas k is a scalar, called the equivalent shear plastic strain.
A superimposed dot denotes the time derivative, that is d=dt, and a surmounted circle ‘‘�’’ on s rep-

resents an objective stress rate (see, e.g., Szab�o and Balla, 1989; Liu and Hong, 1999)
s
� ¼ _s� 2½Bs�; ð23Þ
where ½�� means to take the symmetric part of its tensorial argument. When B takes different definitions, s
�

stands for different objective rates as listed in Table 1.

The notations used in Table 1 are summarized as follows: L :¼ _FF�1 is the velocity gradient tensor,

where F is the two-point tensor of deformation gradient; D and W are the symmetric and skew-symmetric

parts of L, respectively. X :¼ _RRT is the rate of rotation, where R is the rotation tensor in the polar

decomposition F ¼ VR of F. XE :¼ _RER
T
E is known as the Eulerian spin tensor, where RE is the diagonal

transformation of V, that is
V ¼ REkR
T
E; ð24Þ
with k ¼ diag½k1; k2; k3� the diagonal tensor containing the eigenvalues, k1; k2; k3, of V; LE is defined by
LE :¼ _VV�1 þ VXEV
�1:
The B is grossly referred to as the general spin if BT ¼ �B. Accordingly, the objective rates can be

grouped into two main classes: spinning and non-spinning (or corotational and non-corotational). An

objective stress rate s
�
defined in Eq. (23) is said to be spinning if BT ¼ �B; otherwise, it is non-spinning.

Table 1 lists 10 objective stress rates and their corresponding B�s.
1

ective stress rates and their symmetric ½B��s and skew-symmetric hBi�s
ective stress rates s

�
B hBi ½B�

ruesdell(T) L� 1
2
ðtrDÞI3 W D� 1

2
ðtrDÞI3

ldroyd (O) L W D

otter–Rivlin (CR) �LT W �D

aumann (J) W W 0

urban–Baruch (DB) 1
2
DþW� 1

2
ðtrDÞI3 W 1

2
D� 1

2
ðtrDÞI3

reen–Naghdi (GN) X X 0

owerby–Chu (SC) XE XE 0

zab�o–Balla-1 (SB1) LE
1
2
ðLE � LT

EÞ 1
2
ðLE þ LT

EÞ
zab�o–Balla-2 (SB2) �LT

E
1
2
ðLE � LT

EÞ �1
2
ðLE þ LT

EÞ
Xiao–Bruhns–Meyers (XBM) Xlog Xlog 0
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The logarithmic spin Xlog was introduced recently in order that
D ¼ ðlnVÞ� �XloglnVþ ðlnVÞXlog; ð25Þ

where ðlnVÞ� denotes the material time derivative of the Eulerian logarithmic strain tensor lnV. With the

logarithmic spin Xlog, the logarithmic rate of any Eulerian symmetric tensor, say s, is defined by
s
� log

:¼ _s�Xlogsþ sXlog: ð26Þ

In particular, s

� log
is referred as the stress rate of Xiao–Bruhns–Meyers, or simply as the Xiao–Bruhns–

Meyers rate (see, e.g., Xiao et al., 1997a,b; Bruhns et al., 1999; Liu and Hong, 1999). Furthermore, Xiao

et al. (1999) have proved that the basic constitutive equation (18) with its s
�
replaced by the above loga-

rithmic rate for s is the unique integrable hypoelastic equation of grade zero, leading exactly to the fol-
lowing elastic equation:
s ¼ kðlnðdetVÞÞ þ 2GlnV: ð27Þ

For the considered elastic–perfectly plastic models, Prager (1960) has proposed a yielding-stationarity

criterion, which asserts that for a consistent flow model the vanishing of the stress rate implies the sta-

tionarity of yield function. It means that the stress rate must be a corotational rate. See, e.g., the expla-

nation made by Lee (1983) for the Jaumann rate, and the proof made by Xiao et al. (2000) for the
uniqueness of the logarithmic rate. Through the study to be conducted in Sections 3–5 it will be clear that

the employment of the non-corotational stress rates in the constitutive equations leads to the coupling of

deviatoric and volumetric parts of the constitutive equations as well as the loss of linearity in an augmented

stress formulation. The two advantages of uncoupling and linearity strongly support the use of corotational

stress rates in the constitutive equations, especially, for the purpose of numerical integrations.
3. A non-linear representation

Upon substituting Eq. (23) into Eq. (18) we obtain
_s ¼ Bsþ sBT þ 2GDe þ kðtrDÞI3: ð28Þ
In order to derive the objective stress rate for s, denoted by s
}
, such that
s
} ¼ 2GD0e ð29Þ
is precisely a hypoelastic constitutive equation for s, let us first take the trace of Eq. (28) to obtain
tr _s ¼ 2B � sþ 3KtrD; ð30Þ
where 3K ¼ 2Gþ 3k ¼ 2Gð1þ mÞ=ð1� 2mÞ, and m is Poisson�s ratio, and then decompose Eq. (28) into the

deviatoric and volumetric parts:
_sþ 1

3
ðtr _sÞI3 ¼ B s

�
þ 1

3
ðtrsÞI3

�
þ s

�
þ 1

3
ðtrsÞI3

�
BT þ 2GD0e þ KðtrDÞI3; ð31Þ
where trDe ¼ trD was used due to the assumption of trDp ¼ 0, and D0e is the deviator of De. Thus,

substituting Eq. (30) into Eq. (31) gives
_s� Bs� sBT � 1

3
ðtrsÞðBþ BTÞ þ 2

3
ðB � sÞI3 ¼ 2GD0e: ð32Þ
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This relation promotes us to define
s
}
:¼ _s� 2½Bs� � 1

3
ðtrsÞðBþ BTÞ þ 2

3
ðB � sÞI3 ð33Þ
as the objective stress rate for s. Note that the replacement of s
}
in Eq. (29) by s

� ¼ _s� 2½Bs� is incorrect,
unless B is a skew-symmetric tensor, for which case Bþ BT ¼ 0 and B � s ¼ 0, and hence s

} ¼ s
�
.

Now we decompose B into its symmetric part ½B� :¼ ðBþ BTÞ=2 and its skew-symmetric part

hBi :¼ ðB� BTÞ=2, i.e.,

B ¼ ½B� þ hBi: ð34Þ
As a consequence, Eq. (33) becomes
s
} ¼ _s� ðhBi þ ½B�Þsþ sðhBi � ½B�Þ � 2

3
ðtrsÞ½B� þ 2

3
ð½B� � sÞI3 þ

2

9
ðtr ½B�ÞðtrsÞI3: ð35Þ
If ½B� ¼ 0 the above stress rate reduces to the usual corotational stress rate s
�
for s, and Eqs. (29) and (30)

are uncoupled due to B � s ¼ 0. However, if ½B� 6¼ 0, Eqs. (29) and (30) are coupled together. Table 1 reveals

that only the stress rates of Jaumann, Green–Naghdi, Sowerby–Chu and Xiao–Bruhns–Meyers result in

uncoupled deviatoric and volumetric constitutive equations, and the other six non-corotational stress rates

lead to the more complex deviatoric and volumetric coupled constitutive equations.

To proceed, let us further analyze the constitutive model (17)–(23). Substituting Eqs. (29), (19) and (35)

into the deviatoric part of Eq. (17), we obtain
_s� hBisþ shBi þ
_k
cy
s ¼ 2GP; ð36Þ
where
cy :¼
s0y
G

ð37Þ
is the shear yield strain, and
P :¼ D0 þ 1

2G
ð½B�sþ s½B�Þ þ 1

3G
ðtrsÞ½B� � 1

3G
ð½B� � sÞI3 �

1

9G
ðtr ½B�ÞðtrsÞI3: ð38Þ
The inner product of s with Eq. (36) is
s � _sþ
_k
cy
s � s ¼ 2Gs � P; ð39Þ
such that
ksk ¼
ffiffiffi
2

p
s0y ) s0y

_k ¼ s � P: ð40Þ
Recalling s0y > 0, we have
ksk ¼
ffiffiffi
2

p
s0y ) fs � P > 0 () _k > 0g; ð41Þ
and hence,
fksk ¼
ffiffiffi
2

p
s0y and s � P > 0g ) _k > 0: ð42Þ
On the other hand, if _k > 0, Eq. (22) assures ksk ¼
ffiffiffi
2

p
s0y, which together with Eq. (41) assert that
_k > 0 ) fksk ¼
ffiffiffi
2

p
s0y and s � P > 0g: ð43Þ
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Statements (42) and (43) tell us that the yield condition ksk ¼
ffiffiffi
2

p
s0y and the loading condition s � P > 0

are sufficient and necessary for plastic irreversibility _k > 0. In view of Eqs. (20), (21) and (40), the two

statements are logically equivalent to the following criteria:
_k ¼
1
s0y
s � P > 0 if ksk ¼

ffiffiffi
2

p
s0y and s � P > 0;

0 if ksk <
ffiffiffi
2

p
s0y or s � P6 0:

(
ð44Þ
From Eqs. (36) and (44) follows a two-phase non-linear system of differential equations:
_s� hBisþ shBi ¼
� s�P

s0ycy
sþ 2GP if ksk ¼

ffiffiffi
2

p
s0y and s � P > 0;

2GP if ksk <
ffiffiffi
2

p
s0y or s � P6 0:

(
ð45Þ
According to criteria (44) and the complementary trios (20)–(22) and further to the two-phase system

(45), the model of elastoplasticity has precisely two phases: the on phase in which _k > 0 and ksk ¼
ffiffiffi
2

p
s0y and

the off phase in which _k ¼ 0 and ksk6
ffiffiffi
2

p
s0y. In the on phase the plasticity mechanism is on so that the

model exhibits elastoplastic behavior, which is irreversible, while in the off phase the plasticity mechanism is

off so that the model responds elastically and reversibly. Thus, Eq. (44) is called the on-off switching criteria

for the mechanism of plasticity.

Eq. (45) is a cubic degree non-linear representation of the constitutive model upon noting that P is a

linear function of s. However, if ½B� ¼ 0, P reduces to D0, and then Eq. (45) reduces to quadratic non-linear

equation in the plastic phase. No matter which stress rate is adopted, the resulting constitutive equations

are non-linear in nature.
4. A six-dimensional Lie type representation

From Eq. (38) it is obvious that trP ¼ 0. Due to the zero traces of the deviatoric tensors s and P, i.e.,
s33 ¼ �s11 � s22; P33 ¼ �P11 � P22; ð46Þ

the dimensions of Eq. (45) can be reduced to five. Let us introduce the integrating factor
X 0 :¼ exp
k
cy

 !
; ð47Þ
and the following six-dimensional augmented stress vector:
X ¼ Xs

X 0

� �
¼

X 1

X 2

X 3

X 4

X 5

X 0

266666664

377777775 :¼ X 0

s0y

b1s
11 þ b2s

22

b3s
11 þ b4s

22

s23

s13

s12

s0y

266666664

377777775: ð48Þ
Then the on-off switching criteria turn out to be
_X 0 ¼
A0

sX
s > 0 if XTgX ¼ 0 and d

dt ðXsÞTgssXs
h i

> 0;

0 if XTgX < 0 or d
dt ðXsÞTgssXs
h i

6 0;

8<: ð49Þ
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where
g ¼ gss gs0
g0s g00

� �
¼ I5 05�1

01�5 �1

� �
; ð50Þ

ðA0
s Þ

T ¼ As
0 ¼

A1
0

A2
0

A3
0

A4
0

A5
0

266664
377775 :¼ 2

cy

b1P11 þ b2P22
b3P11 þ b4P22

P23
P13
P12

266664
377775: ð51Þ
Therefore, similar to the work by Hong and Liu (1999), we can put Eq. (45) to the following quasilinear

system:
_X ¼ AX; ð52Þ

where
A ¼

As
s As

0

A0
s 0

� �
if XTgX ¼ 0 and d

dt ½ðX
sÞTgssXs� > 0;

As
s As

0

01�5 0

� �
if XTgX < 0 or d

dt ½ðX
sÞTgssXs�6 0;

8>><>>: ð53Þ
in which
As
s :¼

0 0 2b2hBi23 2b1hBi13 2ðb1 � b2ÞhBi12
0 2b4hBi23 2b3hBi13 2ðb3 � b4ÞhBi12

0 �hBi12 �hBi13
skew-sym: 0 �hBi23

0

266664
377775 ð54Þ
is skew-symmetric, i.e., ðAs
sÞ

T ¼ �As
s.

Note that Eq. (52) is a (5 + 1)-dimensional Lie algebra type representation of the constitutive model (17)–

(22), in which X and A are the augmented stress vector and the control tensor, respectively. If Eq. (52) is
viewed as a matrix representation, the (5 + 1) · 1 matrix X contains the contravariant components of the

augmented stress vector X, and the (5 + 1) · (5 + 1) matrix A contains the mixed components of the control

tensor A.
5. PSOo(5; 1) symmetry in the plastic phase

Because the elastic phase equations are rather simple, hereafter, we concentrate on the plastic phase to
bring out internal symmetry inherent in the model in the plastic phase. Denote by Ion an open, maximal,

continuous time interval during which the mechanism of plasticity is on exclusively. From Eqs. (53)1 and

(50) it is easy to verify that the system matrix A in the plastic phase satisfies
ATgþ gA ¼ 0: ð55Þ
Hence, the corresponding transformation G, generating from the solution of
_GðtÞ ¼ AðtÞGðtÞ; ð56Þ

Gð0Þ ¼ I6; ð57Þ
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satisfies
GTgG ¼ g; ð58Þ

detG ¼ 1; ð59Þ

G0
0 P 1: ð60Þ
Thereby the plastic phase control tensor A is an element of the real Lie algebra soð5; 1Þ and generates the
plastic phase transformation G, which is thus an element of the proper orthochronous Lorentz group

SOoð5; 1Þ; refer Liu (2001b) for a more detailed discussion. The function GðtÞ of time t 2 Ion may be viewed

as a connected path of the Lorentz group and the algebraic and topological properties of the proper or-

thochronous Lorentz group are shared by the constitutive model in the plastic phase.

We solve Eq. (58) for the inverse
G�1 ¼ gGTg ð61Þ

and partition G as
G ¼
Gs

s Gs
0

G0
s G0

0

� �
; ð62Þ
where Gs
s, G

s
0 and G0

s are of order 5· 5, 5 · 1 and 1· 5, respectively. Thus, we obtain the following aug-

mented stress transition equation:
XsðtÞ
X 0ðtÞ

� �
¼ Gs

sðtÞðG
s
sÞ

Tðt1Þ �Gs
0ðtÞðG

s
0Þ

Tðt1Þ Gs
0ðtÞG0

0ðt1Þ �Gs
sðtÞG

0
s ðt1Þ

G0
s ðtÞðG

s
sÞ

Tðt1Þ � G0
0ðtÞðG

s
0Þ

Tðt1Þ G0
0ðtÞG0

0ðt1Þ �G0
s ðtÞG

0
s ðt1Þ

� �
Xsðt1Þ
X 0ðt1Þ

� �
; ð63Þ
which is valid for the plastic phase.

Once the augmented stress vector XðtÞ is obtained, from Eq. (48) the deviatoric stress sðtÞ can be

determined as follows:
s11

s22

s23

s13

s12

266664
377775 ¼

b4 �b2

�b3 b1

02�3

03�2

ffiffi
3

p

2
I3

24 35 2s0yffiffiffi
3

p
X 0

Xs: ð64Þ
By this and the plastic phase transition formula (63) one can map sðt1Þ to the current sðtÞ.
Here, we emphasize that ½B� ¼ 0 and hBi ¼ B for the use of corotational stress rates in the constitutive

equations, and hence P reduces to D0 by Eq. (38). Therefore, ðA0
s Þ

T ¼ As
0 defined in Eq. (51) and As

s defined

in Eq. (54) are both functions of t through the deformation history. Accordingly, the A defined in Eq. (53) is

a state matrix depending only on time t, which means that Eq. (52) is a linear ODE system. From the Prager
yielding-stationarity criterion which as demonstrated by Xiao et al. (2000) means that the stress rates must

be corotational, and the above discussions we can exactly linearize the finite strain elastoplastic models in

the augmented stress space. This version presents an extremely simple framework with obvious advantage

for numerical integrations.
6. Quaternionic two-component spinor representation

In order to give a more economic lower dimensional quaternionic two-component spinor representation

of the augmented stress X defined in Eq. (48), which in plastic phase subjects to the following constraint:
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XTgX ¼ 0: ð65Þ

Let us consider the 2· 2 quaternionic Hermitian matrix H, which can be written as
H ¼ x0 þ x5 x1 � x2i2 � x3i3 � x4i4
x1 þ x2i2 þ x3i3 þ x4i4 x0 � x5

� �
; ð66Þ
where i1 ¼ 1, i2, i3 and i4 are four distinct bases of quaternions, and x0, x1, x2, x3, x4 and x5 are six real

numbers. The minus of the determinant of H is just the Minkowski separation ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2þ
ðx4Þ2 þ ðx5Þ2 � ðx0Þ2. Some properties of quaternion algebra, denoted byH, are summarized in Appendix A.

The group SLð2;HÞ is the set of all quaternionic 2 · 2 matrices U with unit determinant. Elements of

SLð2;HÞ are often called quaternion spin transformations. Hence U 2 SLð2;HÞ is a spin transformation.

Since H is quaternionic Hermitian, it is obvious that UH�UT is also a 2 · 2 quaternionic Hermitian matrix.

This led us to write
bH ¼ UHU
T
; ð67Þ
where the bar over U stands for its quaternion conjugate. Taking the determinants of both sides and using

detU ¼ det U
T ¼ 1, one readily obtains ðx̂1Þ2 þ ðx̂2Þ2 þ ðx̂3Þ2 þ ðx̂4Þ2 þ ðx̂5Þ2 � ðx̂0Þ2 ¼ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2þ

ðx4Þ2 þ ðx5Þ2 � ðx0Þ2, ensuring the Minkowski separation of the (5 + 1)-vector X ¼ ðx1; x2; x3; x4; x5; x0Þ is

preserved by the spin transformation U : H 7! bH. Indeed, the transformation U : H7! bH induces a proper

orthochronous Lorentz transformation G : X7!bX, which is an element of SOoð5; 1Þ.
Here we are concerned with the quaternionic two-component spinor space (see, e.g., Naber, 1997) and

the dynamical systems on this space. We return to the matrix H defined in Eq. (66) and remark that if the

vector X 2 M5þ1 is null, i.e., XTgX ¼ 0, then H may be written as the dyadic product of a quaternion two-

dimensional vector and its conjugate transpose:
H ¼ x0 þ x5 x1 � ixs

x1 þ ixs x0 � x5

� �
¼ 2

a1�a1 a1�a2

a2�a1 a2�a2

" #
¼ 2a�aT; ð68Þ
where we used a new notation x ¼ x1 þ ixs to denote the quaternion (e.g., Liu (2002)), of which x1 is the

scalar part of x and xs having three components is the vectorial part of x. We are therefore led to consider a
quaternion two-dimensional vector space H2 with elements a, on which SLð2;HÞ left acts. This is a qua-

ternion spin-space and the elements are quaternion spinors. However, how to realize explicitly the above

spinor map from SLð2;HÞ onto SOoð5; 1Þ, and how to construct explicitly the transform between their Lie

algebras slð2;HÞ and soð5; 1Þ are still pending in the literature. This realizations require a lot of algebraic

constructions based on the quaternion algebra as shown in Fig. 1. We thus relegate those detailed deri-

vations in Appendices B and C.

From Eq. (68) it follows that
x0 ¼ kak2 ¼ ka1k2 þ ka2k2; x1 ¼ 2Scaða1�a2Þ;

xs ¼ 2Vecða2�a1Þ; x5 ¼ ka1k2 � ka2k2;
ð69Þ
where Sca and Vec denote the scalar and vector parts of quaternion, respectively. It deserves to note that
the two �a lead to the same X, and the two quaternion components a1 and a2 suffice to determine the six real

components x1; . . . ; x5; x0 as shown in Eq. (69), and that the map SLð2;HÞ ! SOoð5; 1Þ as shown in Eq.

(B.25) is a two-to-one surjective covering. With this advantage we may identify X ¼ ðXs;X 0Þ ¼
ðx1; xs; x5; x0Þ and consider the following equations system for quaternion spinor:
_a ¼ Qa; ð70Þ



Fig. 1. The algebraic procedure for constructing the spinor map from SLð2;HÞ onto SOoð5; 1Þ.
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where Q as defined in Eq. (C.37) is a 2 · 2 quaternion matrix determined uniquely by A. If we can solve
Eq. (70) instead of Eq. (52), it naturally gives X by the above correspondence (69).
7. SU�(4) group representation

Instead of slð2;HÞ we now turn our attention to the 4· 4 complex matrix representation of soð5; 1Þ. For
this purpose we first associate the bases set i1 ¼ 1; i2; i3; i4 of quaternion with the following 2 · 2 matrices:
1 0

0 1

� �
;

i 0

0 �i

� �
;

0 1

�1 0

� �
;

0 i

i 0

� �� 	
; ð71Þ
denoted respectively by I2 and qk, k ¼ 2; 3; 4. The latter three matrices are obtained from the Pauli matrices

by multiplying by �i�. Then, for any quaternion x ¼
P4

k¼1 x
kik with x1, x2, x3, x4 real numbers we may let /ðxÞ

be the 2 · 2 matrix defined by
/ðxÞ ¼ x1I2 þ
X4
k¼2

xkqk ¼
x1 þ ix2 x3 þ ix4

�x3 þ ix4 x1 � ix2

� �
: ð72Þ
The above / provides us an isomorphic mapping of quaternions onto 2 · 2 matrices. Now we consider

the following 4· 4 complex matrix:
M ¼ M11 M12

M21 M22

� �
; ð73Þ
each sub-matrix Mjk, j; k ¼ 1; 2, is obtained by the above isomorphic mapping of the quaternions o, p, q, r

in Eq. (C.37), that is,
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M ¼

r1 þ ir2 r3 þ ir4 q1 þ iq2 q3 þ iq4
�r3 þ ir4 r1 � ir2 �q3 þ iq4 q1 � iq2
p1 þ ip2 p3 þ ip4 o1 þ io2 o3 þ io4
�p3 þ ip4 p1 � ip2 �o3 þ io4 o1 � io2

2664
3775: ð74Þ
We can prove that such M, satisfying
JM� ¼ MJ; ð75Þ

trM ¼ 0; ð76Þ

is an element of su�ð4Þ. The latter equation is due to Scaðoþ rÞ ¼ 0. Here, � denotes the complex conjugate
and J is defined by
J ¼

0 1 0 0

�1 0 0 0
0 0 0 1

0 0 �1 0

2664
3775: ð77Þ
Thus, by means of Eqs. (C.37) and (74) we have established the isomorphic mapping formula between

slð2;HÞ and su�ð4Þ, the latter of which generates the group SU �ð4Þ.
8. Group preserving schemes

8.1. Numerical scheme based on SOo(5,1)

The simplest scheme for Eq. (52) is a time-centered Euler scheme (see, e.g., Liu, 2001b):
Xnþ1 ¼ Xn þ sAðXnþ1 þ XnÞ; ð78Þ

where Xn denotes the numerical value of X at the discrete time step tn, that is, Xn ¼ XðtnÞ, and s is one half
of the time increment, i.e., s :¼ Dt=2 ¼ ðtnþ1 � tnÞ=2. Using the Cayley transform we have
Xnþ1 ¼ CayðsAÞXn :¼ ðI6 � sAÞ�1ðI6 þ sAÞXn ¼ ½I6 þ 2sðI6 � sAÞ�1
A�Xn: ð79Þ
It is easy to check that this transform preserves the properties (58)–(60) of the proper orthochronous
Lorentz group, i.e., CayðsAÞ 2 SOoð5; 1Þ. Through some derivations CayðsAÞ was found to be (see, e.g.,

Hong and Liu, 1999a; Liu, 2001b)
CayðsAÞ ¼ I5 þ 2cs3gAs
0A

0
sgA

s
s þ 2sgAs

s þ 2cs2gAs
0A

0
s 2cs3gAs

0A
0
sgA

s
0 þ 2sgAs

0

2cs2A0
sgA

s
s þ 2csA0

s 1þ 2cs2A0
sgA

s
0

� �
; ð80Þ
where
g :¼ ðI5 � sAs
sÞ

�1 ¼ I5 þ q1A
s
s þ q2ðAs

sÞ
2 þ q3ðAs

sÞ
3 þ q4ðAs

sÞ
4
;

c :¼ 1

1� s2A0
sgA

s
0

;

in which
w :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBi212 þ hBi213 þ hBi223

q
;



C.-S. Liu / International Journal of Solids and Structures 41 (2004) 1823–1853 1837
q1 :¼
sþ 5w2s3

1þ 5w2s2 þ 4w4s4
; q2 :¼

s2 þ 5w2s4

1þ 5w2s2 þ 4w4s4
;

q3 :¼
s3

1þ 5w2s2 þ 4w4s4
; q4 :¼

s4

1þ 5w2s2 þ 4w4s4
:

Once Xn is calculated at each time step, formula (64) gives the value of stress sn at each time step. The

above scheme together with the discretization of Eq. (30)
trsnþ1 ¼ trsn þ Dtð2Bn � sn þ 3KtrDnÞ; ð81Þ
constitutes a numerical scheme to calculate the stress response s.

A numerical algorithm is called a group preserving scheme if for every time increment the map from Xn to

Xnþ1 preserves the group properties (58)–(60). Now let us investigate what CayðsAÞ 2 SOoð5; 1Þ implies as a

numerical scheme for the constitutive law of plasticity? From Eqs. (48), (58) and (79) it follows that
XT
nþ1gXnþ1 ¼ XT

n gXn ¼ ðX 0
nþ1Þ

2 ksnþ1k2

2ðs0yÞ
2

"
� 1

#
¼ ðX 0

n Þ
2 ksnk2

2ðs0yÞ
2

"
� 1

#
¼ 0: ð82Þ
Because of X 0
nþ1 PX 0

n > 0, the equalities in Eq. (82) say nothing but for every time increment the points

sn and snþ1 are located on the yield hypersphere, i.e., ksnþ1k ¼ ksnk ¼
ffiffiffi
2

p
s0y. In other words, the consistency

condition is fulfilled exactly for every time step in the plastic phase. Therefore, the new numerical scheme

may be specifically called an exact consistency scheme. This is what the conventional schemes of compu-

tational plasticity desired and failed to achieve.
8.2. Numerical scheme based on SL(2,H)

In order to develop the scheme based on the symmetry group SLð2;HÞ, we first need to know the relation

of Q and A. Comparing Eqs. (C.37) and (C.34) and with the A in Eq. (53)1, we get
Ass ¼
0 2b4hBi23 2b3hBi13

�2b4hBi23 0 �hBi12
�2b3hBi13 hBi12 0

24 35 ð83Þ
and thus the axial vector of Ass is given by
axialðAssÞ ¼
hBi12

2b3hBi13
�2b4hBi23

24 35: ð84Þ
The other quantities are given by
A1s ¼
0

2b2hBi23
2b1hBi13

264
375; As5 ¼

2ðb3 � b4ÞhBi12
�hBi13
�hBi23

264
375; As0 ¼

2

cy

b3P11 þ b4P22
P23
P13

264
375;

A10 ¼
2

cy
ðb1P11 þ b2P22Þ; A50 ¼

2

cy
P12; A15 ¼ 2ðb1 � b2ÞhBi12:

ð85Þ
Substituting Eqs. (84) and (85) into Eq. (C.37) we obtain the four quaternion components of Q as
follows:
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r ¼ 1

cy
P12 þ i

1
2
hBi12

b3hBi13 þ b2hBi23
b1hBi13 � b4hBi23

264
375;

q ¼ 1

cy
ðb1P11 þ b2P22Þ � ðb1 � b2ÞhBi12 þ i

ðb3 � b4ÞhBi12 � 1
cy
ðb3P11 þ b4P22Þ

� 1
2
hBi13 � 1

cy
P23

� 1
2
hBi23 � 1

cy
P13

2664
3775;

p ¼ 1

cy
ðb1P11 þ b2P22Þ þ ðb1 � b2ÞhBi12 þ i

ðb3 � b4ÞhBi12 þ 1
cy
ðb3P11 þ b4P22Þ

1
cy
P23 � 1

2
hBi13

1
cy
P13 � 1

2
hBi23

2664
3775;

o ¼ � 1

cy
P12 þ i

1
2
hBi12

b3hBi13 � b2hBi23
�b1hBi13 � b4hBi23

264
375:

ð86Þ
As done in Eq. (79) we simply approximate the solution of Eq. (C.1) by the following Cayley trans-

formation:
U ¼ CayðsQÞ :¼ ðI2 � sQÞ�1ðI2 þ sQÞ ¼ I2 þ 2sðI2 � sQÞ�1
Q: ð87Þ
Substituting Eq. (C.37) for Q into the above equation and through some manipulations, we get
U ¼ CayðsQÞ ¼ I2 þ 2s½ð1� srÞð1� soÞ � s2pq��1 ð1� soÞrþ sqp ð1� soÞqþ sqo
ð1� srÞpþ spr ð1� srÞoþ spq

� �
: ð88Þ
The inverse in the above is calculated according to formula (A.8). Upon obtaining U we can compute G by

Eqs. (B.27)–(B.42). This however needs a lot of algebraic calculations.
8.3. Numerical scheme based on SU �(4)

In this section, let us mention the third type scheme, which is formulated according to the symmetry

group SU �ð4Þ. Substituting Eq. (74) for M into
CayðsMÞ :¼ ðI4 � sMÞ�1ðI4 þ sMÞ ¼ I4 þ 2sðI4 � sMÞ�1
M; ð89Þ
we obtain the Cayley transformation of SU �ð4Þ. Converting this result by the isomorphomic mapping

formula, similar to Eq. (74), from the 4 · 4 complex matrix to the four quaternions a, b, c, and d as arranged

in Eq. (B.11), we thus obtain the corresponding U 2 SLð2;HÞ. Finally, by means of Eqs. (B.27)–(B.42) we

obtain its corresponding G. This scheme needing to calculate the inverse of the 4 · 4 complex matrix and

also two transformations is more time consumption than the other two numerical schemes. However, it
gives almost the same numerical results as that provided by the previous two numerical schemes.
8.4. Numerical results

In order to compare the effects of different objective stress rates on the model behavior let us consider the
elastoplastic models by employing the ten objective stress rates listed in Table 1 under simple shear

deformation, whose deformation gradient is
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F ¼
1 c 0

0 1 0

0 0 1

24 35; c 2 ½0;1Þ; ð90Þ
where c is the shear engineering strain. Let
h :¼ arctanðc=2Þ; _h ¼ 2 _c
c2 þ 4

; h 2 ½0; p=2Þ: ð91Þ
The related kinematic quantities are listed as follows:
D ¼ _c
2

0 1 0

1 0 0

0 0 0

2664
3775; W ¼ _c

2

0 1 0

�1 0 0

0 0 0

2664
3775; X ¼

0 _h 0

� _h 0 0

0 0 0

2664
3775;

XE ¼

0
_h
2

0

� _h
2

0 0

0 0 0

2664
3775; LE ¼ _c

c2 þ 4

c 3 0

1 �c 0

0 0 0

2664
3775;

Xlog ¼ _c
2

0 f ðhÞ 0

�f ðhÞ 0 0

0 0 0

2664
3775;

ð92Þ
where
f ðhÞ ¼ sin h

2 ln 1þsin h
cos h


 �þ cos2 h
2

ð93Þ
has been derived by Liu and Hong (1999). The material constants used in the calculations were G ¼ 50; 000
MPa, m ¼ 0:3 and s0y ¼ 500 MPa. The initial stresses were chosen to be located on the yield surface with

s11 ¼ 300 MPa, s22 ¼ 0 MPa, s23 ¼ 0 MPa, s13 ¼ 0 MPa, and s12 ¼ 400 MPa. Fig. 2 displays the stress
response curves of the models of perfect elastoplasticity with the ten objective stress rates up to c ¼ 1. When

c is more larger, the results for different objective corotational stress rates deviate more pronounced. For

the shear stress it can be seen that the ten curves are located in a narrow strip, having width about 0:0003s0y,
between Szab�o–Balla�s and Sowerby–Chu�s curves, indicating that the differences of objective stress rates

have merely a minor influence on the shear stress. However, the non-spinning type objective stress rates

result in very different axial stress responses as shown in Fig. 2(b). The rates of Szab�o–Balla-1, Truesdell
and Oldroyd all gave concave upwards curves with positive values, while the rates of Szab�o–Balla-2 and

Cotter–Rivlin gave negative slop curves with negative stress after some values of c. It is only the corota-
tional stress rates giving small positive axial stress and approaching to a narrow strip. This, as has been

explained by Liu and Hong (2001), is due to the spinning values being far less than 1=cy, such that the

matrix A in Eq. (52) is dominant by 1=cy not by As
s.

In order to compare the above three numerical schemes, let us consider a simple case with constant D

and W as follows:
D ¼
0:002 0:009 0:005
0:009 �0:001 0:004
0:005 0:004 �0:001

24 35; W ¼
0 0:001 0:002

�0:001 0 �0:005
�0:002 0:005 0

24 35:



Fig. 2. The shear and axial stress responses for the simple shear problem are compared for: (1) Truesdell, (2) Oldroyd, (3) Cotter–

Rivlin, (4) Jaumann, (5) Durban-Baruch, (6) Green–Naghdi, (7) Sowerby–Chu, (8) Szab�o–Balla-1, (9) Szab�o–Balla-2 and (10) Xiao–

Bruhns–Meyers.

Fig. 3. Comparison of the numerical results calculated respectively by the schemes based on groups SOoð5; 1Þ, SLð2;HÞ and SU�ð4Þ.
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Here we employ the Jaumann stress rate in the model and calculate the stress responses with the initial
conditions: s11 ¼ 300 MPa, s22 ¼ 0 MPa, s23 ¼ 400 MPa, s13 ¼ 0 MPa, and s12 ¼ 0 MPa, which were

chosen to be located on the yield surface. Fig. 3(a) and (b) shows that the above three numerical schemes

gave almost the same results. Thus, it confirmed that the derivations of the group relations among

SU �ð4Þ, SLð2;HÞ and SOoð5; 1Þ and their Lie algebras relations among su�ð4Þ, slð2;HÞ and soð5; 1Þ are

correct.

The radial return method together with the first-order back Euler scheme is famous to approach the

solution of plasticity model, which has good numerical performances and the well-established numerical

properties. However, in order to match the consistent condition accurately the radial return method re-
quires to solve a non-linear algebraic equation for the increment of Dk at each time stepping, and thus much

computational time is spent for this work. For instance, the computational time of our schemes spent in the

computation of the above numerical example is about 0.2 s, but the radial return method requires 2 s (with

a prescribed error tolerance 10�3 of the consistent condition). Raising the order of accuracy increases the

computational time correspondingly. Because our schemes satisfy the consistent condition automatically



C.-S. Liu / International Journal of Solids and Structures 41 (2004) 1823–1853 1841
without any iteration, they can save about 90% or more CPU time than the conventional radial return

method.

9. Conclusions

In this paper we have investigated the Lie symmetries inherent in the constitutive models of finite strain

perfect elastoplasticity with different objective stress rates, which include two main types: spinning and non-

spinning. Although the constitutive equations are highly non-linear in the deviatoric stress space of s, as

well as are coupled with the volumetric equation for the non-spinning objective stress rates, they can be

converted to a Lie type system _X ¼ AX in the (5 + 1)-dimensional augmented stress space of X. In this space

an internal spacetime structure of the Minkowskian type is brought out. The system matrix A for the plastic

phase was proved to be an element of the real Lie algebra soð5; 1Þ of the proper orthochronous Lorentz

group SOoð5; 1Þ, and the fundamental solution G of the system _X ¼ AX with the plastic phase A was shown
to be an element of the proper orthochronous Lorentz group.

Due to the nullity of X in the plastic phase we have further established a quaternionic two-component

spinor representation. It is more economic than the Minkowski space representation due to its low

dimensions. In the spinor space we obtained a governing equation _a ¼ Qa, and the underlying group was

found to be SLð2;HÞ, which left acts on the spinor space a.

Moreover, the relations between the two groups SLð2;HÞ and SOoð5; 1Þ, between their Lie algebras

slð2;HÞ and soð5; 1Þ, and between the systems (52) and (70) are explored in depth through the algebraic

methods. This is of course due to the success of developing a new approach in Section 6. These exact
relations (B.27)–(B.42), (C.33), (C.37) as well as (74) may be found their applications in several physical

problems, not merely limited to the plasticity problem discussed here.

According to the symmetries studied in this paper, several numerical schemes which preserve the group

properties for every time increment were developed. This group preserving scheme may be specifically called

an exactly consistent scheme, since it is capable, among other benefits derivable from the group properties,

of updating the stress point automatically located on the yield surface at the end of each time increment in

the plastic phase without any iterative calculations, that is, the consistency condition is fulfilled auto-

matically and exactly. In this regard, the conventional numerical schemes typically do not share the group
properties so that perform less accurate than the consistency scheme. Since the new scheme is easy to

implement numerically and has high computational efficiency and high accuracy, it is recommended to be

used in engineering applications which may require intensive calculations.

Simple shearings are calculated to compare 10 corotational and non-corotational stress rates suggested

in the literature. The results show that, for simple shear deformation, the corotational stress rates supply

reasonable responses for both shear and normal stress components, whereas the non-corotational stress

rates provide unrealistic normal stress responses which are not small and not tending to zero, but grow

unlimited with increasing shear strain. In addition to these drawbacks, the use of non-corotational stress
rates in the constitutive equations increases their non-linearity degree one than the use of corotational stress

rates, and also makes the coupling of deviatoric and volumetric constitutive equations. On the other hand,

from a computational view the two advantages of uncoupling and linearity in augmented stress space

strongly support the use of corotational stress rates in the finite strain constitutive equations, and they also

match the Prager yielding-stationarity criterion.
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Appendix A. Quaternion algebra

The quaternions usually defined as a four-dimensional real vector space such that we can define a

product ðx; yÞ ! xy satisfying the following associative and distributive laws for all x; y; z 2 H and all

a 2 R (see, e.g., Okubo, 1995):
ðxyÞz ¼ xðyzÞ; ðA:1Þ

xðyþ zÞ ¼ xyþ xz; ðA:2Þ

ðxþ yÞz ¼ xzþ yz; ðA:3Þ

aðxyÞ ¼ ðaxÞy ¼ xðayÞ: ðA:4Þ
There exists a distinguished basis elements f1; i2; i3; i4g with the following commutation relations:
i22 ¼ i23 ¼ i24 ¼ �1;

i2i3 ¼ �i3i2 ¼ i4; i3i4 ¼ �i4i3 ¼ i2; i4i2 ¼ �i2i4 ¼ i3:
ðA:5Þ
Thus, if x ¼ x1 þ x2i2 þ x3i3 þ x4i4 and y ¼ y1 þ y2i2 þ y3i3 þ y4i4 are any two quaternions, their product

is defined by
xy ¼ ½x1y1 � x2y2 � x3y3 � x4y4� þ ½x1y2 þ y1x2 þ x3y4 � x4y3�i2 þ ½x1y3 þ y1x3 þ x4y2 � x2y4�i3
þ ½x1y4 þ y1x4 þ x2y3 � x3y2�i4: ðA:6Þ
The conjugate of x is denoted by �x :¼ x1 � x2i2 � x3i3 � x4i4, such that the product of x and �x gives the

usual squared norm of x in E4
kxk2 ¼ x�x ¼ �xx ¼ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2: ðA:7Þ
For non-zero quaternion the inverse x�1 is thus given by
x�1 ¼ �x

kxk2
: ðA:8Þ
If we let x ¼ x1 þ xs, y ¼ y1 þ ys, it is shown by Liu (2002) that the product rule (A.6) can be represented

by
xy ¼ x1y1 � xs � ys þ x1ys þ y1xs þ xs � ys ¼ x1y1 � xs � ys þ x1ys þ y1xs þ ~xsys; ðA:9Þ
where the cross-product of xs � ys and the inner product of xs � ys are defined in the three-dimensional

Euclidean space, and
�: xs 7!~xs :¼
0 �x4 x3

x4 0 �x2

�x3 x2 0

24 35 ðA:10Þ
is the tilde mapping, which maps each axial vector xs :¼ ðx2; x3; x4ÞT to a skew-symmetric matrix ~xs.

We also need to define the scalar product of two quaternions. This can be achieved through the inner

product of the quaternion bases
ij � ik ¼ djk; j; k ¼ 1; 2; 3; 4; ðA:11Þ
where i1 denotes the unit element 1 of the quaternion, and djk is the Kronecker delta function. So that we

have
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x � y ¼ x1y1 þ xs � ys ¼ x1y1 þ x2y2 þ x3y3 þ x4y4;

x � �y ¼ x1y1 � xs � ys ¼ x1y1 � x2y2 � x3y3 � x4y4
ðA:12Þ
and accordingly, Eq. (A.9) can be written as
xy ¼ x � �yþ x1ys þ y1xs þ xs � ys: ðA:13Þ

For the later use we further derive the following formula for the product of three quaternions:
xyz ¼ z1x � �y� x1ys � zs � y1xs � zs � xs � ys � zs þ x � �yzs þ x � zys þ z � �yxs þ z1xs � ys

þ x1ys � zs þ y1xs � zs: ðA:14Þ
Appendix B. Spinor map from SL(2;H) to SOo(5; 1)

Dirac has proposed a quaternionic representation of the Lorentz transformation in M3þ1 by expressing

the quaternion w as the ratio of the other two quaternions u and v (see, e.g., Dirac, 1945)
w ¼ uv�1: ðB:1Þ

Then he considered three quantities
x ¼ u�v; xþ ¼ v�v; x� ¼ u�u; ðB:2Þ

and defined
x ¼ x1 þ x2i2 þ x3i3 þ x4i4; xþ ¼ x0 þ x5; x� ¼ x0 � x5; ðB:3Þ

where x1; . . . ; x5; x0 are real numbers. If u and v are replaced by uk and vk, the six x�s all get multiplied by k�k
and their ratios are unchanged. Thus the ratios of x�s are determined by w. From Eq. (B.2) it follows that
x�x ¼ u�vv�u ¼ uxþ�u ¼ xþx�; ðB:4Þ

which by means of Eqs. (A.7) and (B.3) leads to
ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 ¼ ðx0Þ2 � ðx5Þ2: ðB:5Þ

It represents a null cone in the space M5þ1.

Under the following linear transformations for u and v,
û ¼ auþ bv; v̂ ¼ cuþ dv; ðB:6Þ
where a, b, c, and d are arbitrary quaternions, x, xþ, and x� are transformed as follows:
x̂ ¼ ax��cþ bxþ�dþ ax�dþ b�x�c; ðB:7Þ

x̂þ ¼ cx��cþ dxþ�dþ cx�dþ d�x�c; ðB:8Þ

x̂� ¼ ax��aþ bxþ�bþ ax�bþ b�x�a: ðB:9Þ
This, as has been demonstrated by Dirac, will result in the new six x̂�s being linear functions of the old x�s,
and Eq. (B.5) still holds for the new x̂�s.

Eqs. (B.7)–(B.9) together with the conjugate of Eq. (B.7) can be represented by
x̂þ �̂x
x̂ x̂�

� �
¼ d c

b a

� �
xþ �x
x x�

� �
�d �b
�c �a

� �
: ðB:10Þ
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By letting
U ¼ d c

b a

� �
; ðB:11Þ
Eq. (B.10) is really of the form (67).

Although the product xy is non-commutative, by Eq. (A.9) we can derive the following relation:
xy ¼ yx� 2hyxi ¼ yx� 2~ysxs; ðB:12Þ
where hyxi denotes the skew-symmetric (cross product) part of yx. With this formula we can rearrange Eqs.

(B.7)–(B.9) and the conjugate of Eq. (B.7) to the following forms:
x̂ ¼ a�cx� þ b�dxþ þ a�dx� 2ah�dxi þ b�c�x� 2bh�c�xi; ðB:13Þ

�̂x ¼ c�ax� þ d�bxþ þ d�a�x� 2dh�a�xi þ c�bx� 2ch�bxi; ðB:14Þ

x̂þ ¼ c�cx� þ d�dxþ þ c�dx� 2ch�dxi þ d�c�x� 2dh�c�xi; ðB:15Þ

x̂� ¼ a�ax� þ b�bxþ þ a�bx� 2ah�bxi þ b�a�x� 2bh�a�xi: ðB:16Þ

The above four equations can be combined together to a matrix representation
x̂þ

�̂x

x̂

x̂�

26664
37775 ¼ J

xþ

�x

x

x�

26664
37775; ðB:17Þ
where
J :¼

d�d d�c� 2dh�c c�d� 2ch�d c�c

d�b d�a� 2dh�a c�b� 2ch�b c�a

b�d b�c� 2bh�c a�d� 2ah�d a�c

b�b b�a� 2bh�a a�b� 2ah�b a�a

26664
37775; ðB:18Þ
and h� denotes the operator of skew-symmetrization; for example, the operator hy acting on x is read as

hyxi ¼ ~ysxs.

For the later purpose we introduce another representation of the quaternions x and y with x ¼ x1 þ ixs

and y ¼ y1 þ iys, such that their product is expressed by
xy ¼ ðx1 þ ixsÞðy1 þ iysÞ :¼ x1y1 � xs � ys þ iðx1ys þ y1xs þ xs � ysÞ: ðB:19Þ

Here �i� plays not only the role of an imaginary number with i2 ¼ �1, but also a symbol used to stress

that the quantity been prefixed by �i� is the spatial part; for example, xs is the spatial part of x; conversely,

x1 is the scalar part of x.

Now, the H in Eq. (68), with its x0 þ x5 replaced by xþ and x0 � x5 by x� as that defined in Eq. (B.3), can
be re-expressed as
xþ

�x

x

x�

26664
37775 ¼ C

x1

xs

x5

x0

26664
37775; ðB:20Þ
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where
C :¼
0 0 1 1
1 �i 0 0
1 i 0 0
0 0 �1 1

264
375: ðB:21Þ
Conversely, we have
X :¼
x1

xs

x5

x0

2664
3775 ¼ C�1

xþ

�x
x

x�

2664
3775; ðB:22Þ
where
C�1 :¼ 1

2

0 1 1 0

0 i �i 0

1 0 0 �1

1 0 0 1

2664
3775: ðB:23Þ
Left multiplying both sides of Eq. (B.17) by C�1 and noting (B.20), yields
bX ¼ C�1JCX; ðB:24Þ

which being compared with the proper orthochronous Lorentz transformation bX ¼ GX gives
G ¼ C�1JC: ðB:25Þ

Now, letting
G :¼

G1
1 G1

s G1
5 G1

0

Gs
1 Gs

s Gs
5 Gs

0

G5
1 G5

s G5
5 G5

0

G0
1 G0

s G0
5 G0

0

26664
37775; ðB:26Þ
and then substituting Eq. (B.23) for C�1, Eq. (B.18) for J and Eq. (B.21) for C into Eq. (B.25), we obtain

each term in G as follows:
G1
1 ¼

1

2
ða�dþ d�aþ b�cþ c�bÞ � dh�a1i � bh�c1i � ch�b1i � ah�d1i ¼ a � dþ b � c; ðB:27Þ

G1
s ¼

i

2
ða�d� d�aþ c�b� b�cÞ þ dh�aii þ bh�cii � ch�bii � ah�dii

¼ ða1ds � d1as þ c1bs � b1cs þ ds � as þ bs � csÞT; ðB:28Þ

G1
5 ¼

1

2
ðd�bþ b�d� c�a� a�cÞ; ðB:29Þ

G1
0 ¼

1

2
ðd�bþ b�dþ c�aþ a�cÞ; ðB:30Þ

Gs
1 ¼

i

2
ðd�a� a�dþ c�b� b�cÞ þ iðah�d1i þ bh�c1i � ch�b1i � dh�a1iÞ

¼ c1bs þ d1as � a1ds � b1cs � as � ds � bs � cs; ðB:31Þ
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Gs
s ¼

1

2
ða�dþ d�a� b�c� c�bÞ þ iðah�dii þ dh�aii � bh�cii � ch�biiÞ

¼ ða � �d� b � �cÞI3 þ 2½as 	 ds� � 2½bs 	 cs� þ d1~as þ a1~ds � c1~bs � b1~cs; ðB:32Þ

Gs
5 ¼

i

2
ðd�b� b�dþ a�c� c�aÞ ¼ d1bs � b1ds � c1as þ a1cs þ ds � bs � cs � as; ðB:33Þ

Gs
0 ¼

i

2
ðd�b� b�dþ c�a� a�cÞ ¼ d1bs � b1ds þ c1as � a1cs þ ds � bs þ cs � as; ðB:34Þ

G5
1 ¼

1

2
ðc�dþ d�c� a�b� b�aÞ � dh�c1i þ bh�a1i � ch�d1i þ ah�b1i ¼ c � d� a � b; ðB:35Þ

G5
s ¼

i

2
ðb�a� a�bþ c�d� d�cÞ þ dh�cii � bh�aii � ch�dii þ ah�bii

¼ ðc1ds � d1cs � a1bs þ b1as þ ds � cs � bs � asÞT; ðB:36Þ

G5
5 ¼

1

2
ðd�d� b�b� c�cþ a�aÞ; ðB:37Þ

G5
0 ¼

1

2
ðd�d� b�bþ c�c� a�aÞ; ðB:38Þ

G0
1 ¼

1

2
ða�bþ b�aþ c�dþ d�cÞ � dh�c1i � bh�a1i � ch�d1i � ah�b1i ¼ c � dþ a � b; ðB:39Þ

G0
s ¼

i

2
ða�b� b�aþ c�d� d�cÞ þ dh�cii þ bh�aii � ch�dii � ah�bii

¼ ðc1ds � d1cs þ a1bs � b1as þ ds � cs þ bs � asÞT; ðB:40Þ

G0
5 ¼

1

2
ðd�dþ b�b� c�c� a�aÞ; ðB:41Þ

G0
0 ¼

1

2
ðd�dþ b�bþ c�cþ a�aÞ: ðB:42Þ
In above 	 between two three-dimensional vectors denotes their tensor product, and as before ½as 	 ds�
and ½bs 	 cs� denote, respectively, the symmetric parts of the tensors as 	 ds and bs 	 cs.

Only G1
5, G1

0, G5
5, G5

0, G0
5 and G0

0 are calculable directly from the quaternions a, b, c and d.

The other terms above should be supplemented with their second equalities for directly calculable

from the quaternions a, b, c and d. We first derive the second equality in Gs
s. Using the following for-

mulae:
xs � ðys � zsÞ ¼ ðxs � zsÞys � ðxs � ysÞzs; ðB:43Þ

xs � ðys � zsÞ ¼ ys � ðzs � xsÞ ¼ zs � ðxs � ysÞ ðB:44Þ
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for three-dimensional vectors xs, ys and zs, we can prove that
iah�dixi þ idh�a ixi ¼ �as � ðds � xsÞ þ a1~dsxs þ as � xsds � as � dsxs

� ds � ðas � xsÞ þ d1~asxs þ ds � xsas � ds � asxs

¼ a1~dsxs þ d1~asxs þ 2½as 	 ds�xs � 2as � dsxs:

ðB:45Þ
It thus follows that
iah�dii þ idh�aii ¼ a1~ds þ d1~as þ 2½as 	 ds� � 2as � dsI3 ðB:46Þ

and similarly,
�ibh�cii � ich�bii ¼ �b1~cs � c1~bs � 2½bs 	 cs� þ 2bs � csI3: ðB:47Þ

While the other terms in Gs

s can be computed as follows:
�ia�di� id�aiþ ib�ciþ ic�bi ¼ ð2a1d1 þ 2as � ds � 2b1c1 � 2bs � csÞI3: ðB:48Þ

Substituting Eqs. (B.46)–(B.48) into the first equality on the right-hand side of Gs

s, we obtain the second

equality in Eq. (B.32) for Gs
s.

There are
h�a1i ¼ 0; h�b1i ¼ 0; h�c1i ¼ 0; h�d1i ¼ 0;
because 1 is a scalar; see the sentence follows Eq. (B.18). Thus, the second equalities of G1
1, G

5
1 and G0

1 in

Eqs. (B.27), (B.35) and (B.39) are proved.

By straightforward calculations we can prove that
iða�d� d�aÞ ¼ 2ða1ds � d1as þ as � dsÞ; ðB:49Þ

iðc�b� b�cÞ ¼ 2ðc1bs � b1cs þ cs � bsÞ: ðB:50Þ

Therefore the following equations hold:
iðd�a� a�dþ c�b� b�cÞ ¼ 2ðd1as � a1ds � as � dsÞ þ 2ðc1bs � b1cs þ cs � bsÞ;

iðd�b� b�dþ a�c� c�aÞ ¼ 2ðd1bs � b1ds � bs � dsÞ þ 2ða1cs � c1as � cs � asÞ;

iðd�b� b�dc�a� a�cÞ ¼ 2ðd1bs � b1ds � bs � dsÞ þ 2ðc1as � a1cs þ cs � asÞ;

and the second equalities for Gs

1, G
s
5 and Gs

0 as that appeared in Eqs. (B.31), (B.33) and (B.34) are proved.

It remains to check the validity of the second equalities for G1
s , G

5
s , and G0

s . Similarly, through some

calculations we have
dh�aixi ¼ ds � as � xs; ðB:51Þ

and
dh�aii ¼ ds � as ðB:52Þ

can be viewed as a row vector, since it linearly maps x to a scalar. With this formula the following relations
are obvious
bh�cii ¼ bs � cs; ch�bii ¼ cs � bs; ah�dii ¼ as � ds;

dh�cii ¼ ds � cs; bh�aii ¼ bs � as; ch�dii ¼ cs � ds; ah�bii ¼ as � bs:
Substituting these formulae into Eqs. (B.28), (B.36) and (B.40), we obtain the second equalities for G1
s ,

G5
s , and G0

s . This completes the proof of Eqs. (B.27)–(B.42).
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The above procedure for obtaining the spinor map from SLð2;HÞ onto SOoð5; 1Þ are illustrated in Fig. 1.

This map is from the group SLð2;HÞ onto the group SOoð5; 1Þ and is a spinor map (two-valued represen-

tation) in the sense that the two spin transformations �U map to the same proper orthochronous Lorentz

transformation G. The above formulae require to know UðtÞ. More definitely, we should know the time-
varying Lie algebra QðtÞ, which render UðtÞ obtainable through the integration of differential equation
_UðtÞ ¼ QðtÞUðtÞ. Thus, we below derive the conversion formulae from Q 2 slð2;HÞ to A 2 soð5; 1Þ, and
vice versa.
Appendix C. The explicit isomorphism of sl(2;H) and so(5; 1)

Now, we attempt to convert the six-dimensional system (56) to a corresponding quaternion system with

dimensions two, that is
_UðtÞ ¼ QðtÞUðtÞ; ðC:1Þ

Uð0Þ ¼ I2; ðC:2Þ
in which
Q ¼ r q

p o

� �
ðC:3Þ
is a quaternionic matrix, subject to Scaðrþ oÞ ¼ 0. The conversion relation is indeed a Lie algebra iso-

morphism of slð2;HÞ 3 Q onto soð5; 1Þ 3 A.

Parametrizing the spin transformation U 2 SLð2;HÞ
HðtÞ ¼ UðtÞHð0ÞUTðtÞ; ðC:4Þ
differentiating Eq. (C.4) with respect to t, and using Eq. (C.1) we thus obtain
_xþ _�x

_x _x�

" #
¼ r q

p o

� �
xþ �x

x x�

" #
þ xþ �x

x x�

" #
�r �p

�q �o

" #
: ðC:5Þ
It can be written as
_xþ

_�x

_x

_x�

26664
37775 ¼

xþðrþ �rÞ þ qxþ �x�q

x�qþ xþ�pþ r�xþ �x�o

xþpþ x��qþ oxþ x�r

x�ðoþ �oÞ þ p�xþ x�p

26664
37775: ðC:6Þ
From Eq. (B.12) it follows that
�x�q ¼ �q�x� 2h�q�xi;

�x�o ¼ �o�x� 2h�o�xi;

x�r ¼ �rx� 2h�rxi;

x�p ¼ �px� 2h�pxi:
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Substituting these equations into Eq. (C.6) yields
_xþ
_�x
_x
_x�

2664
3775 ¼

xþðrþ �rÞ þ qxþ �q�x� 2h�q�xi
x�qþ xþ�pþ r�xþ �o�x� 2h�o�xi
xþpþ x��qþ oxþ �rx� 2h�rxi
x�ðoþ �oÞ þ p�xþ �px� 2h�pxi

2664
3775; ðC:7Þ
which can be rearranged to
_xþ
_�x
_x
_x�

2664
3775 ¼

rþ �r �q� 2h�q q 0
�p rþ �o� 2h�o 0 q

p 0 oþ �r� 2h�r �q
0 p �p� 2h�p oþ �o

2664
3775

xþ

�x
x

x�

2664
3775: ðC:8Þ
Also parametrizing Eq. (B.17) as
xþðtÞ
�xðtÞ
xðtÞ
x�ðtÞ

2664
3775 ¼ JðtÞ

xþð0Þ
�xð0Þ
xð0Þ
x�ð0Þ

2664
3775; ðC:9Þ
taking the time derivative of Eq. (C.9) and then using Eq. (C.9) again, we have
_xþ
_�x
_x
_x�

2664
3775 ¼ _JJ�1

xþ

�x
x
x�

2664
3775: ðC:10Þ
Comparing the above equation with Eq. (C.8) yields
_JJ�1 ¼

rþ �r �q� 2h�q q 0
�p rþ �o� 2h�o 0 q

p 0 oþ �r� 2h�r �q
0 p �p� 2hp oþ �o

2664
3775: ðC:11Þ
For the proper orthochronous Lorentz transformation G 2 SOoð5; 1Þ, taking the time derivative of Eq.

(B.25), and using Eqs. (56), (C.11) and (B.25) again, we obtain
A ¼ C�1

rþ �r �q� 2h�q q 0
�p rþ �o� 2h�o 0 q

p 0 oþ �r� 2h�r �q
0 p �p� 2h�p oþ �o

2664
3775C: ðC:12Þ
Letting
A :¼

A11 A1s A15 A10

As1 Ass As5 As0

A51 A5s A55 A50

A01 A0s A05 A00

2664
3775; ðC:13Þ
and then substituting Eq. (B.23) for C�1 and Eq. (B.21) for C into Eq. (C.12), we obtain each term in A as

follows:
A11 ¼
1 ðrþ �rþ oþ �oÞ � h�o1i � h�r1i; ðC:14Þ

2
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A1s ¼
i

2
ð�r� rþ o� �oÞ þ h�oii � h�rii; ðC:15Þ

A15 ¼
1

2
ðpþ �p� q� �qÞ; ðC:16Þ

A10 ¼
1

2
ðpþ �pþ qþ �qÞ; ðC:17Þ

As1 ¼
i

2
ðr� �rþ �o� oÞ � ih�o1i þ ih�r1i; ðC:18Þ

Ass ¼
1

2
ðrþ �rþ oþ �oÞ þ ih�oii þ ih�rii; ðC:19Þ

As5 ¼
i

2
ð�p� p� qþ �qÞ; ðC:20Þ

As0 ¼
i

2
ð�p� pþ q� �qÞ; ðC:21Þ

A51 ¼
1

2
ðqþ �q� p� �pÞ � h�q1i þ h�p1i; ðC:22Þ

A5s ¼
i

2
ðp� �pþ q� �qÞ þ h�qii þ h�pii; ðC:23Þ

A55 ¼
1

2
ðrþ �rþ oþ �oÞ; ðC:24Þ

A50 ¼
1

2
ðrþ �r� o� �oÞ; ðC:25Þ

A01 ¼
1

2
ðpþ �pþ qþ �qÞ � h�q1i � h�p1i; ðC:26Þ

A0s ¼
i

2
ðq� �qþ �p� pÞ þ h�qii � h�pii; ðC:27Þ

A05 ¼
1

2
ðrþ �r� o� �oÞ; ðC:28Þ

A00 ¼
1

2
ðrþ �rþ oþ �oÞ: ðC:29Þ
First, we note due to Scaðrþ oÞ ¼ 0 that
rþ �rþ oþ �o ¼ 2Scaðrþ oÞ ¼ 0: ðC:30Þ
It thus follows that A55 ¼ A00 ¼ 0. Second, we show through some calculations that
ih�oixi þ ih�rixi ¼ ð~os þ ~rsÞxs ðC:31Þ
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and thus,
ih�oii þ ih�rii ¼ ~os þ ~rs: ðC:32Þ
Substituting Eqs. (C.30) and (C.32) into Eq. (C.19) gives Ass ¼ ~os þ ~rs. Now, by using
h�o1i ¼ 0; h�p1i ¼ 0; h�q1i ¼ 0; h�r1i ¼ 0;

h�oii ¼ 0; h�pii ¼ 0; h�qii ¼ 0; h�rii ¼ 0
on the other equations in Eqs. (C.14)–(C.29), and noting that
xþ �x ¼ 2x1 ¼ 2ScaðxÞ; x� �x ¼ 2ixs ¼ 2iVecðxÞ;
we eventually obtain
A ¼
0 rTs � oTs p1 � q1 p1 þ q1;

os � rs ~os þ ~rs ps þ qs ps � qs
q1 � p1 �pTs � qTs 0 r1 � o1
p1 þ q1 pTs � qTs r1 � o1 0

2664
3775: ðC:33Þ
The above formula enables us to obtain A from Q. It is easy to check that such A, satisfying Eq. (55), is

an element of the Lie algebra soð5; 1Þ.
In order to derive Q from A, we let
A ¼
0 AT

1s A15 A10

�A1s Ass As5 As0

�A15 �AT
s5 0 A50

A10 AT
s0 A50 0

2664
3775 ðC:34Þ
by considering the 6 · 6 real matrix A 2 soð5; 1Þ. In above Ass is a 3 · 3 skew–symmetric matrix function.

Multiplying Eq. (C.12) by C from the left-hand side, then substituting Eq. (C.34) for A and Eq. (B.21) for C

into the resultant, we obtain
rþ �r �q� 2h�q q 0
�p rþ �o� 2h�o 0 q

p 0 oþ �r� 2h�r �q
0 p �p� 2h�p oþ �o

2664
3775

0 0 1 1

1 �i 0 0

1 i 0 0

0 0 �1 1

2664
3775

¼

0 0 1 1

1 �i 0 0

1 i 0 0
0 0 �1 1

2664
3775

0 AT
1s A15 A10

�A1s Ass As5 As0

�A15 �AT
s5 0 A50

A10 AT
s0 A50 0

2664
3775: ðC:35Þ
Expanding the above quaternion algebraic equation generates
qþ �q iðq� �qÞ rþ �r rþ �r

rþ �o �iðrþ �oþ 2~osÞ �p� q �pþ q

oþ �r iðoþ �rþ 2~rsÞ p� �q pþ �q

pþ �p ið�p� pÞ �o� �o oþ �o

26664
37775 ¼

A10 � A15 AT
s0 � AT

s5 A50 A50

iA1s AT
1s � iAss A15 � iAs5 A10 � iAs0

�iA1s AT
1s þ iAss A15 þ iAs5 A10 þ iAs0

A10 þ A15 AT
s0 þ AT

s5 A50 �A50

266664
377775;
ðC:36Þ
where h�oii ¼ �i~os, h�rii ¼ �i~rs, h�o1i ¼ 0, h�q1i ¼ 0, h�r1i ¼ 0, h�p1i ¼ 0, h�pii ¼ 0, and h�qii ¼ 0 were used.
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From Eq. (C.36) we obtain
Q ¼ r q
p o

� �
¼ 1

2

A50 þ iðaxialðAssÞ þ A1sÞ A10 � A15 þ iðAs5 � As0Þ
A10 þ A15 þ iðAs5 þ As0Þ �A50 þ iðaxialðAssÞ � A1sÞ

� �
; ðC:37Þ
in which axial ðAssÞ denotes the axial vector of Ass, that is, ðaxialðAssÞÞi ¼ 1
2
�ijkðAssÞkj, where �ijk is the Levi–

Civita permutation symbol. It is obvious that Q thus obtained is an element of slð2;HÞ. Formula (C.37)

enables us to obtain Q from A. Formulae (C.13) and (C.37) explicitly expressing the Lie algebras iso-

morphism of slð2;HÞ and soð5; 1Þ are very important for further calculations. Both the Lie algebras slð2;HÞ
and soð5; 1Þ have 15 independent parameters.
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