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Abstract

For finite strain elastic—perfectly plastic models, the use of non-spinning objective stress rates leads to cubic degree
non-linear differential equations as well as the coupling of deviatoric and volumetric constitutive equations. The
governing equations reduce to quadratic non-linearity and the coupling disappears when spinning objective stress rates
are used. In order to effectively deal with these non-linearities we first convert the non-linear constitutive equations into
a Lie type system, X = AX, A € s0(5, 1), for X in the Minkowski spacetime M°>"!, which has an indefinite metric g of
signature (5,1). However, for spinning objective stress rates A merely depends on ¢ through deformation history and the
above equation reduces to a time-varying linear system. The new representation admits a Lie symmetry of the proper
orthochronous Lorentz group SO, (5, 1) in the plastic phase. In terms of X, the yield condition is transformed to a null
cone condition XTgX = 0 in M>"!. Due to this nullity we thus assign a quaternionic Hermitian matrix to represent X,
and convert the six-dimensional system to a more economic lower dimensional quaternionic two-component spinor
system, & = Qa, Q € s/(2,H). In the two-dimensional spinor space the Lie symmetry is found to be SL(2,H), the
mapping of which onto SO, (5, 1) is derived. In addition to the mapping between so(5, 1) and s/(2, H), an isomorphic
mapping between s/(2,H) and su*(4) is also established, the latter of which generates the group SU*(4). Finally,
according to these Lie symmetries the numerical schemes preserving the group properties are developed, which satisfy
the consistency condition ! exactly for every time step without iterations at all.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A novel formulation for elastoplasticity has been recently developed by Hong and Liu (1999a,b, 2000),
Liu and Hong (2001), Liu (2001a, 2003, in press), and Mukherjee and Liu (2003). These authors have
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explored the internal symmetry groups of the constitutive models for perfect elastoplasticity with or
without considering large rotation, for bilinear elastoplasticity, for visco-elastoplasticity, for isotropic
work-hardening elastoplasticity, as well as for mixed-hardening elastoplasticity to ensure that the plastic
consistency condition is exactly satisfied at each time step once the computational scheme can take these
symmetries into account.

In order to grasp the concepts that this paper needs we employ a small-strain elastic—perfectly plastic
model as a demonstrated example:

GJ. .
S+ —s =2Ge, (1)
Ty

where / subjects to the switching criteria
. {Tlos~é>0 if |s|| = v21) and s-é>0,
A= ¥

2
0 if [ls| < v21) or s-€<0. @)

As usual s and e are respectively stress and strain deviators, rg is the shear yield strength, and G is the
shear modulus. While |s|| := /s - s defines the Euclidean norm of s, and a dot between two same order
tensors denotes their Euclidean inner product, ||s|| = \/57:8 signifies the yield condition, s - € > 0 the loading
condition, and s - € < 0 the unloading condition. Obviously the governing equation for s is non-linear in the
plastic phase.

Let us introduce 2

X! Bys't + Bys*
X2 ﬂ3S11 +ﬂ4S22
X* X3 X0 53
X= {X‘)} = x* = 1—0 §13 s (3)
x5 Y 12
X0 T
where
G2
X :=exp (7) (4)
y
is an internal time, and
f, :=sin (6)4—%), f,:=sinf, p;:=cos (94—%), p, :=cos0 (5)

with 6 being any real number. Then, the model represented by Egs. (1) and (2) can be transformed into a
time-varying linear system (see, e.g., Hong and Liu, 1997, 2000)

X = A()X, (6)
where
_ 05 A?) : T . d s\ Tws
A_{Ag 0] if X'gX=0 and $[(X)X]>O, (7)

2 A special case of Eq. (3) with 6 = 0 can be viewed as the homogeneous coordinates (non-dimensionalized with respect to the tensile
yield strength \/513) of the II'yushin stress space (%s”, ‘/7§s11 + /352, V355, /3513, \/§S12).
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: . d
A= [ 0(1’; %0] if X'gX <0 or % [(X*)'X*] <0, (8)
in which
_ IS 05><1
gi |:01><5 _1 :|’ (9)
Bién + Préxn
.26 Bsén '+ B
(AS>T =Aq = 0 €23 . (10)
y éns
én

05 and I5 denote, respectively, the five-order zero and identity matrices, and the superscript ‘T’ denotes the
transpose.
For the formulation represented by Egs. (3)-(10) there have several points deserved to point out:

(a) The variable X defined in Eq. (3) that includes the internal time X° as temporal component and the
other five independent deviatoric stresses multiplied by X° /1% as spatial component, X*, may be called
augmented stress. The underlying space of X denoted by M>*! is called the Minkowski spacetime, whose
metric tensor g as given by Eq. (9) is of signature (5,1).

(b) A deviatoric stress point s on the yield surface ||s| = v/27° in the Euclidean space E> corresponds to an
augmented stress point X on the right circular cone {X|X gX = 0} emanating from X = 0 in the Min-
kowski spacetime M>*!, while an s within the yield surface corresponds to an X in the interior
{X|X"gX < 0} of the cone. X € M**! is called a null vector if it satisfies the cone condition X"gX = 0.

(¢) The loading condition s - & > 0 and the unloading condition s - ¢ <0 are changed to d[(X*)"X*]/ds > 0
and d[(X®)"X*]/dt <0, respectively.

(d) For the linear system (6), whose A in the plastic phase as given in Eq. (7) satisfies

ATg+gA=0. (11)

The set of all (5§+1)x(5+ 1) matrices that satisfy the above relation is denoted by so(5, 1).
(e) A matrix function G(¢) that satisfies

G(1) = A(G(0), (12)
G(0) =1, (13)
with A(¢) € so(5, 1) is called a single-parameter Lorentz group. From Egs. (11)—(13) it follows readily that
G'gG =g. (14)
The G if further satisfying
detG = 1, (15)
Gy =1 (16)

is called the proper orthochronous Lorentz group, and is denoted by SO,(5,1). It is an internal symmetry
group of the small-strain elastic—perfectly plastic model in the plastic phase. In the above det is the
shorthand of determinant and G is the 00th mixed component of G.

It is known that an element A of the real Lie algebra so(5, 1) of the proper orthochronous Lorentz group
SO,(5,1) has the general form:
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A A A
1A o

with properties:
(A)" =A% (A)" = A

But the form of A previously found by Hong and Liu (1997, 2000) as that shown in Eq. (7) for the small-
strain deformation models of elastoplasticity has zero A and is, therefore, less general. As shown by Hong
and Liu (1999a) and Liu and Hong (2001), we may generalize the model by including a non-vanishing,
skew-symmetric tensor A in A if finite strain deformation and rotation are considered. The original version
presented an extremely simple framework leading to a linear set of differential equations with obvious
advantage for numerical integrations.

In this paper, we extend these works to large deformation constitutive equations with different coro-
tational or non-corotational stress rates reported in the literature, and compare the behavior of these
models under simple shear deformation. The numerical results about the simple shear behavior of the
elastoplastic models with different objective stress rates are shown here for completeness. Some similar
results have been examined and compared by Atluri (1984), Szabé and Balla (1989) and others. The large
deformation version is not so simple, since it is highly non-linear but would be clear later that our extension
still has many advantages for numerical algorithms.

The objective rates of Kirchhoff stress * are summarized by the form © = ¢ — 2[Bz], where B is assigned
and is function of ¢ through deformation history. For example, the objective stress rates of Truesdell (1955),
Oldroyd (1950), Cotter and Rivlin (1955), Jaumann (1911), Durban and Baruch (1977), Green and Naghdi
(1965), Sowerby and Chu (1984), Szabd and Balla (1989), and Xiao et al. (1997a,b, 1999) are all of this
form. Due to the appearance of spurious shear oscillatory behavior of hypoelastic models and elastoplastic
models with some objective stress rates, considerable efforts have been made to resolve the problem of
choosing an appropriate objective stress rate in rate-form constitutive equations (see, e¢.g., Bruhns et al.,
2001; Xiao et al., 2001; Lin, 2003; and references therein). Liu and Hong (1999) have examined the above
ten objective stress rates for the model of hypoelasticity, and obtained two criteria for oscillatory and non-
oscillatory stress response under simple shear deformation. Then, Liu and Hong (2001) used the com-
parison theorem to derive a sufficient criterion for non-oscillatory stress response under simple shear of the
elastoplastic models using corotational stress rates.

Here, we investigate the finite strain models of elastoplasticity by considering the decomposition of
deformation rate with D = D° + DP (see, e.g., Neale, 1981; Nemat-Nasser, 1982; Bruhns et al., 1999) and by
employing the above ten objective stress rates on the constitutive equations. We attempt to unify the finite
strain theory from the point view of the Minkowski spacetime and its admissible internal symmetry group.
Furthermore, we also utilize the Lie group and its Lie algebra properties to develop high accuracy and high
efficiency schemes, which can be used to calculate the stress response under different deformation condi-
tions. In the plastic phase the augmented stress, which is a null vector in space M>™', can be mathematically
identified to a 2x2 quaternionic Hermitian matrix with zero determinant. Then we can develop a qua-
ternion based spinor representation of the six-dimensional proper orthochronous Lorentz group, as well as
a two-component spinor framework for the plasticity theory with finite strain deformation.

As we know the numerical schemes developed up to now for the integration of constitutive equations of
elastoplasticity are executed directly in stress space, for example, the tangent stiffness-radial return method
(see, e.g., Krieg and Krieg, 1977; Schreyer et al., 1979), the radial return method (see, e.g., Krieg and Krieg,
1977; Kobayashi and Ohno, 2002; Lubarda and Benson, 2002; Auricchio and Beirao da Veiga, 2003), the

3 In the literature of finite strain plasticity we can find the so-called Kirchhoff stress tensor = o det F, where ¢ is the Cauchy stress
tensor, and F the deformation gradient tensor.
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elastic predictor-radial corrector method (see, e.g., Schreyer et al., 1979), the generalized midpoint rule (see,
e.g., Ortiz and Popov, 1985), the closest-point-projection algorithm (see, e.g., Simo and Taylor, 1985), and
also the plastic predictor—elastic corrector method (see, e.g., Nemat-Nasser, 1991). In order to enforce the
consistency condition at every time step the above-mentioned algorithms require some iterative calculations
until stress point at the end of each time step converges to the yield surface (see, e.g., Simo and Hughes,
1998), which is known as a main source of numerical errors and of consumption of computational time. A
numerical scheme which preserves symmetry and utilizes the invariance property will be more capable of
capturing key features during elastoplastic deformation and has long-term stability and much more im-
proved efficiency and accuracy. Therefore the issue of internal symmetries in the constitutive laws of
plasticity is not only important in its own right, but will also find applications to computational plasticity.

In this paper we consider finite strain constitutive models of perfect elastoplasticity with different
objective stress rates in Sections 2 and 3, and manage to put them in a more appropriate setting in Section 4,
such that the internal spacetime structure and the internal symmetries of the models are brought out in
Section 5. Then, taking advantage of the nullity of the introduced augmented stress in plastic phase we
develop a mathematically equivalent quaternionic Hermitian matrix representation in Section 6, which is
suitable to derive the spinor map from SL(2,H) onto SO,(5,1) via an extension of Dirac’s method. Some
properties about quaternion algebra H are summarized in Appendix A. In order to precisely derive the
relations of the corresponding time-varying Lie algebras we develop a direct approach to realize the spinor
map in Appendix B, and then the Lie algebras isomorphism in Appendix C. It will be sure that the newly
proposed direct approach is rather crucial to pinpoint the relation between s/(2, H) and so(5, 1). In addition
to the spinor representation we also develop a SU*(4) group representation in Section 7. Then, by using
these internal symmetries inherent in the constitutive models we develop consistent schemes in Section 8.
One direct benefit of these schemes is that the stress point is exactly updated on the yield surface without
iterative calculations for every time step. This is what the conventional numerical schemes desired and
failed to achieve. Finally, we draw conclusions in Section 9.

As we merely consider the perfectly elastoplastic finite strain effect on material, which can be regarded as
a prototype plastic mechanism indicating what might be achieved by this type finite strain modeling rather
than as a definitive statement about the real material behavior, the other hardening mechanisms and
elastoplastic models are intensively discussed in current research circles with the goal of more closely
representing reality. To achieve comprehensive simulation of material behavior, it is necessary to use more
realistic elastoplastic models taking both finite strain and hardening effects into account. Xiao et al. (2001)
and Bruhns et al. (2001) have extended their self-consistent finite strain models with logarithmic rate to the
kinematic hardening plasticity. Numerical tests with simple shear and torsion show that their models can
obtain satisfactory and reasonable explanation of experimental observation. Although we have investigated
the internal symmetry of small strain Prager kinematic hardening plasticity in Hong and Liu (1999b), and
small strain mixed-hardening plasticity in Liu (in press), it deserves in the future to extend the current study
on finite strain kinematic hardening plasticity and also on other finite strain elastoplastic models.

2. Large deformation constitutive models

The constitutive law of elastoplasticity of solid materials proposed by Prandtl and Reuss can be re-
postulated and enlarged to take account of large deformation as in the following postulations:

D =D+ D", (17)

7 =2GD* + A(tr D)1, (18)
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si =21)DP, (19)
sl < V2, (20)
=0, (21)
|| = V2104, (22)

where the Lamé material parameters G and A and the shear yield stress ‘cg are the only three property

constants needed in the isotropic hypoelastic—perfectly plastic large deformation model. It is postulated that
0<G<oo,-2G/3 < A< oo and r(y’ > 0, and that tr D = 0. We let 7 denote the Kirchhoff stress and s its
deviatoric part, i.e., s := t — I3(trt)/3, where tr denotes the trace of the tensor. The bold-faced symbols D,
D° and DP? stand for the deformation rate, elastic deformation rate, and plastic deformation rate, respec-
tively, all being symmetric tensors, whereas 4 is a scalar, called the equivalent shear plastic strain.

A superimposed dot denotes the time derivative, that is d/d¢, and a surmounted circle “o” on 7 rep-
resents an objective stress rate (see, e.g., Szabd and Balla, 1989; Liu and Hong, 1999)

T=1—2[B1, (23)

where [-] means to take the symmetric part of its tensorial argument. When B takes different definitions,
stands for different objective rates as listed in Table 1.

The notations used in Table 1 are summarized as follows: L := FF~! is the velocity gradient tensor,
where F is the two-point tensor of deformation gradient; D and W are the symmetric and skew-symmetric
parts of L, respectively. @ := RR" is the rate of rotation, where R is the rotation tensor in the polar
decomposition F = VR of F. Qg := RERE is known as the Eulerian spin tensor, where Rg is the diagonal
transformation of V, that is

V = ReiR], (24)
with A = diag[4,, 4», 43] the diagonal tensor containing the eigenvalues, A, 4», 43, of V; Lg is defined by
L :=VV ' 4+ VQ VL

The B is grossly referred to as the general spin if B = —B. Accordingly, the objective rates can be
grouped into two main classes: spinning and non-spinning (or corotational and non-corotational). An
objective stress rate ¢ defined in Eq. (23) is said to be spinning if BT = —B; otherwise, it is non-spinning.
Table 1 lists 10 objective stress rates and their corresponding B’s.

Table 1

10 objective stress rates and their symmetric [B]’s and skew-symmetric (B)’s
Objective stress rates B (B) [B]
1. Truesdell(T) L —1(trD)I; w D —1(trD)I;
2. Oldroyd (O) L A D
3. Cotter—Rivlin (CR) —LT w -D
4. Jaumann (J) W W 0
5. Durban-Baruch (DB) ID+W-L(trD)I; w ID-1(trD)I;
6. Green—Naghdi (GN) Q Q 0
7. Sowerby—Chu (SC) Q Qp 0
8. Szabo-Balla-1 (SB1) Lg HLg — L) (Lg +LY)
9. Szab6-Balla-2 (SB2) LI ILe - L) (g +LY)
10. Xiao—Bruhns—Meyers (XBM) Qls Qlos 0
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The logarithmic spin Q' was introduced recently in order that
D = (InV) — Q"°%InV + (InV)Q"%, (25)
where (InV) denotes the material time derivative of the Eulerian logarithmic strain tensor InV. With the

logarithmic spin Q'°¢, the logarithmic rate of any Eulerian symmetric tensor, say z, is defined by

ol

T =1 — Qe 4 1 Qe (26)

olog | . . .

In particular, ® is referred as the stress rate of Xiao—Bruhns—Meyers, or simply as the Xiao—Bruhns—
Meyers rate (see, e.g., Xiao et al., 1997a,b; Bruhns et al., 1999; Liu and Hong, 1999). Furthermore, Xiao
et al. (1999) have proved that the basic constitutive equation (18) with its 7 replaced by the above loga-
rithmic rate for 7 is the unique integrable hypoelastic equation of grade zero, leading exactly to the fol-
lowing elastic equation:

7 = A(In(det V)) + 2GInV. (27)

For the considered elastic—perfectly plastic models, Prager (1960) has proposed a yielding-stationarity
criterion, which asserts that for a consistent flow model the vanishing of the stress rate implies the sta-
tionarity of yield function. It means that the stress rate must be a corotational rate. See, e.g., the expla-
nation made by Lee (1983) for the Jaumann rate, and the proof made by Xiao et al. (2000) for the
uniqueness of the logarithmic rate. Through the study to be conducted in Sections 3-5 it will be clear that
the employment of the non-corotational stress rates in the constitutive equations leads to the coupling of
deviatoric and volumetric parts of the constitutive equations as well as the loss of linearity in an augmented
stress formulation. The two advantages of uncoupling and linearity strongly support the use of corotational
stress rates in the constitutive equations, especially, for the purpose of numerical integrations.

3. A non-linear representation
Upon substituting Eq. (23) into Eq. (18) we obtain
=Bt +tB" +2GD° + A(tr D)I;. (28)
In order to derive the objective stress rate for s, denoted by <s>, such that

S =26D" (29)
is precisely a hypoelastic constitutive equation for s, let us first take the trace of Eq. (28) to obtain

trt =2B -7+ 3KtrD, (30)
where 3K = 2G + 34 =2G(1 +v)/(1 — 2v), and v is Poisson’s ratio, and then decompose Eq. (28) into the

deviatoric and volumetric parts:

1 1 1
é + § (trT)I’; = B(S + 5 (tr‘c)l3> =+ (S —+ g(tr‘l;)l3>BT + ZGD/e —+ K(tr D)I}, (31)

where trD° = trD was used due to the assumption of trDP =0, and D" is the deviator of D°. Thus,
substituting Eq. (30) into Eq. (31) gives

$ —Bs —sB" — % (trt)(B+B") + % (B-7)I; = 2GD". (32)
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This relation promotes us to define

1 2
$ = — 2[Bs] —3(re)(B+B) + 3 (B- 1)l (33)
as the objective stress rate for s. Note that the replacement of $ in Eq. (29) by s = § — 2[Bs] is incorrect,
unless B is a skew-symmetric tensor, for which case B+ B" =0 and B -7 = 0, and hence <s> =s.
Now we decompose B into its symmetric part [B]:= (B+B")/2 and its skew-symmetric part
(B) := (B—B")/2, ie,

B = [B] + (B). (34)
As a consequence, Eq. (33) becomes
S =5 (B) + [B)s +((B) — [B]) > (tro)[B] + 2 ([B] - s)ks + 2 (tr [B])(tro)h (39)

If [B] = 0 the above stress rate reduces to the usual corotational stress rate s for s, and Egs. (29) and (30)
are uncoupled due to B - = = 0. However, if [B] # 0, Egs. (29) and (30) are coupled together. Table 1 reveals
that only the stress rates of Jaumann, Green—Naghdi, Sowerby—Chu and Xiao—Bruhns—Meyers result in
uncoupled deviatoric and volumetric constitutive equations, and the other six non-corotational stress rates
lead to the more complex deviatoric and volumetric coupled constitutive equations.

To proceed, let us further analyze the constitutive model (17)—(23). Substituting Egs. (29), (19) and (35)
into the deviatoric part of Eq. (17), we obtain

$ — (B)s +s(B) + yis = 2GP, (36)
y
where
0
V=G (37)

is the shear yield strain, and

P=D + % ([B]s + s[B]) + % (tr7)[B] — % (B] - s)L; — % (tr [B]) (tr7)L. (38)

The inner product of s with Eq. (36) is

s-s+jys-s:2Gs-P7 (39)
such that
Isl| = V20 = )i =s - P. (40)
Recalling 7) > 0, we have
Isll = V21) = {s - P > 0 <= i > 0}, (41)
and hence,
{lIsll = V2t and s-P>0}=i>0. (42)

On the other hand, if Z > 0, Eq. (22) assures Isll = \/518, which together with Eq. (41) assert that
A>0={|s||=v2:) and s-P>0}. (43)
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Statements (42) and (43) tell us that the yield condition |[[s| = \/512 and the loading conditions-P > 0
are sufficient and necessary for plastic irreversibility 4 > 0. In view of Egs. (20), (21) and (40), the two
statements are logically equivalent to the following criteria:

5s-P>0 if ||s| =v27) and s-P >0, )
— y
0 if [s|| < v21) or s-P<0.
From Egs. (36) and (44) follows a two-phase non-linear system of differential equations:
. —3Es+2GP if s| =v2t) and s-P >0,
$— (B)s+s(B) = oy ) (45)
2GP if [|s| <v2t) or s-P<0.

According to criteria (44) and the complementary trios (20)-(22) and further to the two-phase system
(45), the model of elastoplasticity has precisely two phases: the on phase in which 2 > 0 and |[[s|| = \/Z‘cg and
the off phase in which 1 =0 and ||s|| < \/Zr(y) In the on phase the plasticity mechanism is on so that the
model exhibits elastoplastic behavior, which is irreversible, while in the off phase the plasticity mechanism is
off so that the model responds elastically and reversibly. Thus, Eq. (44) is called the on-off switching criteria
for the mechanism of plasticity.

Eq. (45) is a cubic degree non-linear representation of the constitutive model upon noting that P is a
linear function of 7. However, if [B] = 0, P reduces to D', and then Eq. (45) reduces to quadratic non-linear
equation in the plastic phase. No matter which stress rate is adopted, the resulting constitutive equations
are non-linear in nature.

4. A six-dimensional Lie type representation

From Eq. (38) it is obvious that tr P = 0. Due to the zero traces of the deviatoric tensors s and P, i.e.,
S33 = —Sll — S22, P33 = —P11 —P22, (46)

the dimensions of Eq. (45) can be reduced to five. Let us introduce the integrating factor

;L
X% :=exp (—), (47)
Ty

and the following six-dimensional augmented stress vector:

EA L S
Xz ﬁ3sll + 545,22
X X3 X0 523
X = [XO] === 3 (48)
Xs Y Slz
X0 7
L _ L y .

Then the on-off switching criteria turn out to be

Owys : T s\T s
L [AX >0 ifXTgX=0 and g[(X)ng}>o,
X0 = (49)

0 if X'gX <0 or 4 {(XS)TngS} <0,
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where
— gss gsO _ 15 05><1 50
8 |:g05 goo} {OIXS -1 ]’ (50)
A} BiPii + BaPo
- A} > B3P + ByPr
A Ty Pis
A} P

Therefore, similar to the work by Hong and Liu (1999), we can put Eq. (45) to the following quasilinear
system:

X = AX, (52)

where

Al A ‘ ‘
[ : 0] if X'gX=0 and 4[(X")"'g,X‘] >0,
A =

0
A0 (53)
S 0 1 T d s\T s
[les ()} if X'gX<0 or £[(X) g,X]<0,
in which
0 0 205(B)ys 2B1(B)1y 2(By — ) (B) 1,
. 0 24(B)ys 2B3(B)1s 2(Bs — Ba)(B),
A= 0 —(B)1 —(B)13 (54)
skew-sym. 0 —(B)y,
0
is skew-symmetric, i.e., (A})" = —A®.

Note that Eq. (52) is a (5 + 1)-dimensional Lie algebra type representation of the constitutive model (17)—
(22), in which X and A are the augmented stress vector and the control tensor, respectively. If Eq. (52) is
viewed as a matrix representation, the (5+ 1)x 1 matrix X contains the contravariant components of the
augmented stress vector X, and the (5+ 1) x (5 + 1) matrix A contains the mixed components of the control
tensor A.

5. PSO,(5,1) symmetry in the plastic phase

Because the elastic phase equations are rather simple, hereafter, we concentrate on the plastic phase to
bring out internal symmetry inherent in the model in the plastic phase. Denote by I, an open, maximal,
continuous time interval during which the mechanism of plasticity is on exclusively. From Egs. (53); and
(50) it is easy to verify that the system matrix A in the plastic phase satisfies

ATg+gA = 0. (55)
Hence, the corresponding transformation G, generating from the solution of
G(r) = A(1)G(1), (56)

G(0) =1Is, (57)
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satisfies
G'gG =g, (58)
detG =1, (59)
Gy > 1. (60)

Thereby the plastic phase control tensor A is an element of the real Lie algebra so(5, 1) and generates the
plastic phase transformation G, which is thus an element of the proper orthochronous Lorentz group
SO,(5,1); refer Liu (2001b) for a more detailed discussion. The function G(¢) of time ¢ € I,, may be viewed
as a connected path of the Lorentz group and the algebraic and topological properties of the proper or-
thochronous Lorentz group are shared by the constitutive model in the plastic phase.

We solve Eq. (58) for the inverse

G '=gG'g (61)
and partition G as
G, G

6o gl ©)

where G;, G and Gg are of order 5x5, 5x1 and 1x35, respectively. Thus, we obtain the following aug-
mented stress transition equation:

[Xs(f)} _ {Gi(f)(GZ)T(fl) ~Gy()(Gy) (1) Gy(nGh(n) — GZ(t)G?(tl)] [Xs(h)] (63)
X°(e) GY(D)(G)" (1) = GH()(Gy) (1) GH(NG() — GGy ’
which is valid for the plastic phase.

Once the augmented stress vector X(z) is obtained, from Eq. (48) the deviatoric stress s(¢) can be
determined as follows:

s
s2 ﬂ4 _ﬂz 0
0, 27 .
sBl=|-b B > yoxb- (64)
st 03> éla V3x
§12

By this and the plastic phase transition formula (63) one can map s(#,) to the current s(z).

Here, we emphasize that [B] = 0 and (B) = B for the use of corotational stress rates in the constitutive
equations, and hence P reduces to D’ by Eq. (38). Therefore, (AS)T = A defined in Eq. (51) and A; defined
in Eq. (54) are both functions of ¢ through the deformation history. Accordingly, the A defined in Eq. (53) is
a state matrix depending only on time #z, which means that Eq. (52) is a linear ODE system. From the Prager
yielding-stationarity criterion which as demonstrated by Xiao et al. (2000) means that the stress rates must
be corotational, and the above discussions we can exactly linearize the finite strain elastoplastic models in
the augmented stress space. This version presents an extremely simple framework with obvious advantage
for numerical integrations.

6. Quaternionic two-component spinor representation

In order to give a more economic lower dimensional quaternionic two-component spinor representation
of the augmented stress X defined in Eq. (48), which in plastic phase subjects to the following constraint:
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X'gX = 0. (65)
Let us consider the 2x2 quaternionic Hermitian matrix H, which can be written as
0 5 1 De 3 4
X' +x X =X —Xx13—X14
H= . . . , 66
x4+ ¥, + i + xy X0 —x° (66)

where i; = 1, i,, i3 and i, are four distinct bases of quaternions, and x°, x', x?, x>, x* and x° are six real

numbers. The minus of the determinant of H is just the Minkowski separation (x!)* + (x2)* + (x*)*+
(x*)* 4 (x°)* — (x°)*. Some properties of quaternion algebra, denoted by H, are summarized in Appendix A.

The group SL(2,H) is the set of all quaternionic 2x2 matrices U with unit determinant. Elements of
SL(2,H) are often called quaternion spin transformations. Hence U € SL(2,H) is a spin transformation.
Since H is quaternionic Hermitian, it is obvious that UHU is also a 2 x2 quaternionic Hermitian matrix.
This led us to write

H = UHU, (67)

where the bar over U stands for its quaternion conjugate. Taking the determinants of both sides and using
detU=det U' = 1, one readily obtains (¥')> + (#2)* + ()’ + G1* + (#°)* — (29)> = (')> + () + )+
(x*)* + (x*)” — (x°)*, ensuring the Minkowski separation of the (5+ 1)-vector X = (x!,x?,x*,x*,x%,x0) is
preserved by the spin transformation U : H—H. Indeed, the transformation U : H—H induces a proper
orthochronous Lorentz transformation G : X+—X, which is an element of SO, (5, 1).

Here we are concerned with the quaternionic two-component spinor space (see, e.g., Naber, 1997) and
the dynamical systems on this space. We return to the matrix H defined in Eq. (66) and remark that if the
vector X € M°*! is null, i.e., X"gX = 0, then H may be written as the dyadic product of a quaternion two-
dimensional vector and its conjugate transpose:

P4y —ix a'ad' alad? _

H= ixt K0 —-x° } =2 [ocz&l aZaZ] = 2aa', (68)
where we used a new notation x = x' +ix° to denote the quaternion (e.g., Liu (2002)), of which x! is the
scalar part of x and x* having three components is the vectorial part of x. We are therefore led to consider a
quaternion two-dimensional vector space H? with elements a, on which SL(2, H) left acts. This is a qua-
ternion spin-space and the elements are quaternion spinors. However, how to realize explicitly the above
spinor map from SL(2, H) onto SO,(5, 1), and how to construct explicitly the transform between their Lie
algebras s/(2,H) and so(5, 1) are still pending in the literature. This realizations require a lot of algebraic
constructions based on the quaternion algebra as shown in Fig. 1. We thus relegate those detailed deri-
vations in Appendices B and C.

From Eq. (68) it follows that

2 2 2 _
2= laf” =l |7+ [|lo?]]°,  x' = 28ca(a'@),

(69)

X' =2Vec(o’a'), ¥ = |[la[" - [,
where Sca and Vec denote the scalar and vector parts of quaternion, respectively. It deserves to note that
the two £a lead to the same X, and the two quaternion components &' and a? suffice to determine the six real
components x',... x> x° as shown in Eq. (69), and that the map SL(2,H) — SO,(5,1) as shown in Eq.
(B.25) is a two-to-one surjective covering. With this advantage we may identify X = (X*,X°) =
(x!,x*,x°,x%) and consider the following equations system for quaternion spinor:

o = Qa, (70)
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Fig. 1. The algebraic procedure for constructing the spinor map from SL(2,H) onto SO,(5,1).

where Q as defined in Eq. (C.37) is a 2x2 quaternion matrix determined uniquely by A. If we can solve
Eq. (70) instead of Eq. (52), it naturally gives X by the above correspondence (69).

7. SU*(4) group representation

Instead of s/(2, H) we now turn our attention to the 4 x4 complex matrix representation of so(5, 1). For
this purpose we first associate the bases set i; = 1,1y, 3,14 of quaternion with the following 2 X 2 matrices:

to thlo SF[5 o 17 oy 2

denoted respectively by I, and p,, £ = 2,3, 4. The latter three matrices are obtained from the Pauli matrices
by multiplying by i". Then, for any quaternion x = 377, x*i; with x', x, x*, x* real numbers we may let ¢(x)
be the 2x2 matrix defined by

4 14 5.2 34 5.4
1 koo | x +ix X’ 4+ 1x
d’(x)*XIZJFkZ;x P = [—x3—|—ix4 xl—ixz} (72)

The above ¢ provides us an isomorphic mapping of quaternions onto 2x2 matrices. Now we consider
the following 4 x4 complex matrix:

(73)

M — [Mn Mu}

M21 M22

each sub-matrix My, j,k = 1,2, is obtained by the above isomorphic mapping of the quaternions o, p, q, r
in Eq. (C.37), that is,
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i rntinn g +iga g +iga
—r3+iry o —in —q3+igs g —iq

M = . : . ) 74
pr+1p ps+1ips o0 +10; 03+ 104 (74)
—p3+ ip4 P — ipz —03 +104 01 — 10,
We can prove that such M, satisfying
JM" = MJ, (75)
trM =0, (76)

is an element of su*(4). The latter equation is due to Sca(o + r) = 0. Here, * denotes the complex conjugate
and J is defined by

0 1 0 0
1.0 0 0

I=10 0 0 1 (77)
0 0 —1 0

Thus, by means of Egs. (C.37) and (74) we have established the isomorphic mapping formula between
sI(2,H) and su*(4), the latter of which generates the group SU*(4).

8. Group preserving schemes
8.1. Numerical scheme based on SO,(5,1)

The simplest scheme for Eq. (52) is a time-centered Euler scheme (see, e.g., Liu, 2001b):
X1 =X, + tAX 1 + X)), (78)

where X,, denotes the numerical value of X at the discrete time step ¢,, that is, X, = X(¢,), and 7 is one half
of the time increment, i.e., t := At/2 = (¢,11 — t,)/2. Using the Cayley transform we have

X,.1 = Cay(tA)X, := (I, — tA) ' (Is + tA)X, = [Is + 27(Is — TA) 'A]X,. (79)

It is easy to check that this transform preserves the properties (58)—(60) of the proper orthochronous
Lorentz group, i.e., Cay(tA) € SO,(5,1). Through some derivations Cay(tA) was found to be (see, e.g.,
Hong and Liu, 1999a; Liu, 2001b)

Is + 2cASANAS + 2tpAl 4 2c?ASAY 2T nASAMAS + 2thA)

A) =
Cay(zA) 2 AlpAS + 2ctA” 1+ 2c?A%A ’

(80)
where
ni=(Is — 7AY) " =I5+ p,AS + o (A + p3(AY) + pa(AY",
1
c= 240 s’
1 —12A; 1A,

in which
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o T+ Sw?e? o 2 + SwAth
Pri=q + 5w2e2 + 4wAtt’ Pri=7 + Sw2t? 4 4uwAtd’
‘C3 ‘C4
ps3 - P4 =

T 1+ 5w + Attt T 14w 1 At

Once X, is calculated at each time step, formula (64) gives the value of stress s, at each time step. The
above scheme together with the discretization of Eq. (30)

trt, . = trt, + At(2B, - 7, + 3KtrD,), (81)

constitutes a numerical scheme to calculate the stress response 7.

A numerical algorithm is called a group preserving scheme if for every time increment the map from X, to
X.,.+1 preserves the group properties (58)—(60). Now let us investigate what Cay(tA) € SO,(5,1) implies as a
numerical scheme for the constitutive law of plasticity? From Egs. (48), (58) and (79) it follows that

2 2

XL—ngwl = XnTan = (Xr?+l)2 [ H;E:O])”Z - 1] = (X;?)z [;:;ng - 1] =0. (82)
y y

Because of X! | > X? > 0, the equalities in Eq. (82) say nothing but for every time increment the points

s, and s, are located on the yield hypersphere, i.e., ||s,.1]| = [|s.|| = \/irg In other words, the consistency

condition is fulfilled exactly for every time step in the plastic phase. Therefore, the new numerical scheme

may be specifically called an exact consistency scheme. This is what the conventional schemes of compu-

tational plasticity desired and failed to achieve.

8.2. Numerical scheme based on SL(2,H )

In order to develop the scheme based on the symmetry group SL(2, H), we first need to know the relation
of Q and A. Comparing Egs. (C.37) and (C.34) and with the A in Eq. (53),, we get

0 2B4(B)y;  2B3(B) 3
Ay = | =2B4(B)y 0 —(B)1y (83)
—2B5(B) 15 (B)1 0
and thus the axial vector of A is given by
(B)1
axial(Ay) = | 2p5(B)y5 |- (84)
—2B4(B)»;
The other quantities are given by
0 2(By — Ba)(B) 12 5 BsPii + BaPr
Ay = | 2B:(B)ys |, As= —(B)13 , A= . Py ,
2B,(B)15 —(B); ' Py (85)

2
Ao = —(BPi + PoPr), Aso = V_Plz’ Ais =2(By — B2)(B) -

y

2
Ty

Substituting Eqgs. (84) and (85) into Eq. (C.37) we obtain the four quaternion components of Q as
follows:
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. 3(B)i
r= V—Plz +1| B3(B)13 + Po(B)os |
g ﬁ1<B>13 - ﬁ4<B>23
[ (B3 — Ba)(B)1, _i(ﬁspll + BaPr) T
qui(ﬁan + BaPr) — (B — B2)(B) ), +1 _%<B>13_ip23 ’
’ L _%<B>z3 - iPB J (86)
[ (By = Ba)(B)1, + % (B3P + BaPr2) T
p= yi(ﬁlpn + BoPn) + (B1 — Bo)(B)y, +1i iPB —3(Bh; ’
Y i iPIS —3(B)y;s i
. 3(B)1
0=——Pp+i| B3(B);— Pr(B)ys
g —B1(B) 13 — Ba(B)y3

As done in Eq. (79) we simply approximate the solution of Eq. (C.1) by the following Cayley trans-
formation:

U=Cay(rQ) := (L, —1Q) (L +1Q) =L, +21(I, —1Q) ' Q. (87)
Substituting Eq. (C.37) for Q into the above equation and through some manipulations, we get

(I —t0)r+1qp (1 —70)q+ 1q0

U = Cay(1Q) = I, 4 2¢[(1 — wr)(1 — 7o) — <°pq] ™" (1—mp+pr (1—w)o+1pq |

(88)
The inverse in the above is calculated according to formula (A.8). Upon obtaining U we can compute G by
Eqgs. (B.27)—(B.42). This however needs a lot of algebraic calculations.

8.3. Numerical scheme based on SU*(4)

In this section, let us mention the third type scheme, which is formulated according to the symmetry
group SU*(4). Substituting Eq. (74) for M into

Cay(tM) := (I, — M) ' (I, + ™) = I + 2t(I; — t™M) 'M, (89)

we obtain the Cayley transformation of SU*(4). Converting this result by the isomorphomic mapping
formula, similar to Eq. (74), from the 4 X4 complex matrix to the four quaternions a, b, ¢, and d as arranged
in Eq. (B.11), we thus obtain the corresponding U € SL(2, H). Finally, by means of Egs. (B.27)—-(B.42) we
obtain its corresponding G. This scheme needing to calculate the inverse of the 4 x4 complex matrix and
also two transformations is more time consumption than the other two numerical schemes. However, it
gives almost the same numerical results as that provided by the previous two numerical schemes.

8.4. Numerical results

In order to compare the effects of different objective stress rates on the model behavior let us consider the
elastoplastic models by employing the ten objective stress rates listed in Table 1 under simple shear
deformation, whose deformation gradient is
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0
0|, 7€[0,00), (90)
1

where 7 is the shear engineering strain. Let
2

0 := arctan(y/2), sz, 0 €10,n/2). (91)
The related kinematic quantities are listed as follows:
010 0 10 0 00
Dz%lOO,W:%—IOO,Q:—OOO,
0 00 0 00 0 00
0 42 0 ' y 3 0
Q=1 00| Le=5g[1 = 0] (92)
0 0 0 0 0 O
0 fO) 0
Ql"g;{f(@) 0 ol
0 0 0
where
: 2
10) = sty 93)

has been derived by Liu and Hong (1999). The material constants used in the calculations were G = 50, 000
MPa, v=0.3 and rg = 500 MPa. The initial stresses were chosen to be located on the yield surface with
s =300 MPa, s =0 MPa, s = 0 MPa, s'> =0 MPa, and s'?> = 400 MPa. Fig. 2 displays the stress
response curves of the models of perfect elastoplasticity with the ten objective stress rates up to y = 1. When
y is more larger, the results for different objective corotational stress rates deviate more pronounced. For
the shear stress it can be seen that the ten curves are located in a narrow strip, having width about 0.000312,
between Szabdo-Balla’s and Sowerby—Chu’s curves, indicating that the differences of objective stress rates
have merely a minor influence on the shear stress. However, the non-spinning type objective stress rates
result in very different axial stress responses as shown in Fig. 2(b). The rates of Szabd-Balla-1, Truesdell
and Oldroyd all gave concave upwards curves with positive values, while the rates of Szabd-Balla-2 and
Cotter—Rivlin gave negative slop curves with negative stress after some values of y. It is only the corota-
tional stress rates giving small positive axial stress and approaching to a narrow strip. This, as has been
explained by Liu and Hong (2001), is due to the spinning values being far less than 1/y,, such that the
matrix A in Eq. (52) is dominant by 1/y, not by A].

In order to compare the above three numerical schemes, let us consider a simple case with constant D
and W as follows:

0.002  0.009  0.005 0 0.001  0.002
D= ]0.009 -0.001 0.004 |, W= |-0.001 0 —0.005
0.005 0.004 —0.001 —0.002 0.005 0
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Fig. 2. The shear and axial stress responses for the simple shear problem are compared for: (1) Truesdell, (2) Oldroyd, (3) Cotter—
Rivlin, (4) Jaumann, (5) Durban-Baruch, (6) Green—Naghdi, (7) Sowerby—Chu, (8) Szab6-Balla-1, (9) Szabé-Balla-2 and (10) Xiao—
Bruhns-Meyers.
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Fig. 3. Comparison of the numerical results calculated respectively by the schemes based on groups SO,(5,1), SL(2,H) and SU*(4).

Here we employ the Jaumann stress rate in the model and calculate the stress responses with the initial
conditions: s'' =300 MPa, s> =0 MPa, s** =400 MPa, s> =0 MPa, and s'> =0 MPa, which were
chosen to be located on the yield surface. Fig. 3(a) and (b) shows that the above three numerical schemes
gave almost the same results. Thus, it confirmed that the derivations of the group relations among
SU*(4), SL(2,H) and SO,(5,1) and their Lie algebras relations among su*(4), s/(2,H) and so(5,1) are
correct.

The radial return method together with the first-order back Euler scheme is famous to approach the
solution of plasticity model, which has good numerical performances and the well-established numerical
properties. However, in order to match the consistent condition accurately the radial return method re-
quires to solve a non-linear algebraic equation for the increment of AZ at each time stepping, and thus much
computational time is spent for this work. For instance, the computational time of our schemes spent in the
computation of the above numerical example is about 0.2 s, but the radial return method requires 2 s (with
a prescribed error tolerance 1073 of the consistent condition). Raising the order of accuracy increases the
computational time correspondingly. Because our schemes satisfy the consistent condition automatically
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without any iteration, they can save about 90% or more CPU time than the conventional radial return
method.

9. Conclusions

In this paper we have investigated the Lie symmetries inherent in the constitutive models of finite strain
perfect elastoplasticity with different objective stress rates, which include two main types: spinning and non-
spinning. Although the constitutive equations are highly non-linear in the deviatoric stress space of s, as
well as are coupled with the volumetric equation for the non-spinning objective stress rates, they can be
converted to a Lie type system X = AX in the (5 + 1)-dimensional augmented stress space of X. In this space
an internal spacetime structure of the Minkowskian type is brought out. The system matrix A for the plastic
phase was proved to be an element of the real Lie algebra so(5,1) of the proper orthochronous Lorentz
group SO,(5,1), and the fundamental solution G of the system X = AX with the plastic phase A was shown
to be an element of the proper orthochronous Lorentz group.

Due to the nullity of X in the plastic phase we have further established a quaternionic two-component
spinor representation. It is more economic than the Minkowski space representation due to its low
dimensions. In the spinor space we obtained a governing equation &« = Qe, and the underlying group was
found to be SL(2, H), which left acts on the spinor space a.

Moreover, the relations between the two groups SL(2,H) and SO,(5,1), between their Lie algebras
sI(2,H) and so(5,1), and between the systems (52) and (70) are explored in depth through the algebraic
methods. This is of course due to the success of developing a new approach in Section 6. These exact
relations (B.27)—(B.42), (C.33), (C.37) as well as (74) may be found their applications in several physical
problems, not merely limited to the plasticity problem discussed here.

According to the symmetries studied in this paper, several numerical schemes which preserve the group
properties for every time increment were developed. This group preserving scheme may be specifically called
an exactly consistent scheme, since it is capable, among other benefits derivable from the group properties,
of updating the stress point automatically located on the yield surface at the end of each time increment in
the plastic phase without any iterative calculations, that is, the consistency condition is fulfilled auto-
matically and exactly. In this regard, the conventional numerical schemes typically do not share the group
properties so that perform less accurate than the consistency scheme. Since the new scheme is easy to
implement numerically and has high computational efficiency and high accuracy, it is recommended to be
used in engineering applications which may require intensive calculations.

Simple shearings are calculated to compare 10 corotational and non-corotational stress rates suggested
in the literature. The results show that, for simple shear deformation, the corotational stress rates supply
reasonable responses for both shear and normal stress components, whereas the non-corotational stress
rates provide unrealistic normal stress responses which are not small and not tending to zero, but grow
unlimited with increasing shear strain. In addition to these drawbacks, the use of non-corotational stress
rates in the constitutive equations increases their non-linearity degree one than the use of corotational stress
rates, and also makes the coupling of deviatoric and volumetric constitutive equations. On the other hand,
from a computational view the two advantages of uncoupling and linearity in augmented stress space
strongly support the use of corotational stress rates in the finite strain constitutive equations, and they also
match the Prager yielding-stationarity criterion.
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Appendix A. Quaternion algebra

The quaternions usually defined as a four-dimensional real vector space such that we can define a
product (x,y) — xy satisfying the following associative and distributive laws for all x,y,z € H and all
a € R (see, e.g., Okubo, 1995):

(xy)z = x(yz), (A.1)
x(y +z) = xy + xz, (A.2)
(x+y)z=xz+yz, (A.3)
a(xy) = (ax)y = x(ay). (A4)

There exists a distinguished basis elements {1, 1y, i,is} with the following commutation relations:
boboh=-l o (A3)
bl3 = I3 = 14,314 = —l413 = b, 4 = —bly = 13.

Thus, if x = x' + x%i, + x*i; + x*i; and y = y' 4+ %I, + 3%i3 + y*i, are any two quaternions, their product
is defined by

Xy = [xlyl _x2y2 _ x3y3 _x4y4] + [x1y2 +y1x2 +x3y4 —x4y3}i2 + [x1y3 +ylx3 +x4y2 _ x2y4]i3
+ [x1y4 + it X%y — x3y2]i4. (A.6)

1

The conjugate of x is denoted by X := x! — x?i, — x*i; — x*is, such that the product of x and X gives the

usual squared norm of x in F*

%[ = xx = xx = ()" + ()" + ()" + (4", (A7)
For non-zero quaternion the inverse x ' is thus given by
= X (A.8)
1]

If we let x = x' + x5,y = ' +¥%, it is shown by Liu (2002) that the product rule (A.6) can be represented
by

Xy :lel _ Xs X ys +xlys +ylxs + Xs X ys — xlyl _ XS . ys +xlys —|—y1XS _’_isys7 (A9)

where the cross-product of x* x y* and the inner product of x*-y* are defined in the three-dimensional
Euclidean space, and

0 —x* X
~ XX = | 0 —x° (A.10)
x> X 0

is the tilde mapping, which maps each axial vector x* := (xz,x3,x4)T to a skew-symmetric matrix X°.

We also need to define the scalar product of two quaternions. This can be achieved through the inner
product of the quaternion bases

i ik =0, Jjk=123,4, (A.11)

where i; denotes the unit element 1 of the quaternion, and ¢ is the Kronecker delta function. So that we
have
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Xy =xyt+xy = alyt 4o+ a0y Hatyt

X-§=xlyl o xt oy = byl a2 xR o xh (A.12)
and accordingly, Eq. (A.9) can be written as
Xy =X -y +x'y +yx +x° xy. (A.13)
For the later use we further derive the following formula for the product of three quaternions:
Xyz=z'x-y—x'y 2 —y'x* 2 XXy - Hx -y x-zy +z2-yx 22X x ¥
+xly x 2+ yIxS x 78 (A.14)

Appendix B. Spinor map from SL(2, H) to SO,(5,1)

Dirac has proposed a quaternionic representation of the Lorentz transformation in M**! by expressing
the quaternion w as the ratio of the other two quaternions u and v (see, e.g., Dirac, 1945)

w=uv ' (B.1)
Then he considered three quantities

X=uv, x'=vw, x =un, (B.2)
and defined

X=x'+xbh+xi+xY, P =x"4+x°, x=x"—x, (B.3)
where x',...,x°,x" are real numbers. If u and v are replaced by ui and vA, the six x’s all get multiplied by A4
and their ratios are unchanged. Thus the ratios of x’s are determined by w. From Eq. (B.2) it follows that

XX =uWwi=w'a=x"x", (B.4)
which by means of Egs. (A.7) and (B.3) leads to

() )+ () 4+ () = () = () (B.5)

It represents a null cone in the space M>*!.
Under the following linear transformations for u and v,

i=au+bv, V=cu+dy, (B.6)

where a, b, ¢, and d are arbitrary quaternions, x, x*, and x~ are transformed as follows:

X = ax ¢+ bx"d + axd + bxe, (B.7)
# =cex e+ dx'd + exd + dxc, (B.8)
% =ax a4+ bx"b 4+ axb + bxa. (B.9)

This, as has been demonstrated by Dirac, will result in the new six X’s being linear functions of the old x’s,
and Eq. (B.5) still holds for the new x’s.
Egs. (B.7)—-(B.9) together with the conjugate of Eq. (B.7) can be represented by
o4 fa + = 3 r
R
X X b a||x x c a
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By letting
d c
o=t <] @1

Eq. (B.10) is really of the form (67).
Although the product xy is non-commutative, by Eq. (A.9) we can derive the following relation:

Xy = yx — 2(yx) = yx — 2¥°x°, (B.12)

where (yx) denotes the skew-symmetric (cross product) part of yx. With this formula we can rearrange Eqs.
(B.7)-(B.9) and the conjugate of Eq. (B.7) to the following forms:

X = acx~ + bdx" + adx — 2a(dx) + bex — 2b(ex), (B.13)
x = cax~ + dbx" 4 dax — 2d(ax) + cbx — 2¢(bx), (B.14)
7 =cex” +ddx" + edx — 2¢(dx) + dex — 2d(cx), (B.15)
%~ = aax~ + bbx" + abx — 2a(bx) + bax — 2b(ax). (B.16)
The above four equations can be combined together to a matrix representation
3t Xt
X X
=J B.17
X x |’ ( )
X x~
where
dd dc—2d(c ecd—2c(d cc
g |db da—2d@ cb—2eb cal (B.18)
bd bc—2b{c ad—2a{d ac
(

bb ba—2b(a ab-—2a(b aa

and (- denotes the operator of skew-symmetrization; for example, the operator (y acting on x is read as
(yx) = y'x". ‘

For the later purpose we introduce another representation of the quaternions x and y with x = x! + ix°
and y = y' +1iy’, such that their product is expressed by

xy = (x' +ix)(' +iy’) = xy! x5y Hily VI X x YY), (B.19)

Here i’ plays not only the role of an imaginary number with i* = —1, but also a symbol used to stress
that the quantity been prefixed by ‘1’ is the spatial part; for example, x* is the spatial part of x; conversely,
x! is the scalar part of x.

Now, the H in Eq. (68), with its x° + x° replaced by x* and x° — x> by x~ as that defined in Eq. (B.3), can
be re-expressed as

N

®o=

(B.20)

193

= =
1S
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where
o o 1 1
|t - 0 0
C:.= 1 i 0 o0 (B.21)
10 0 -1 1
Conversely, we have
Myl x*
X | X
X:= 5= C < |’ (B.22)
_)CO X
where
01 1 0
_ 1jo i —-i 0
1 — —
=210 0 41 (B.23)
1 0 0 1
Left multiplying both sides of Eq. (B.17) by C™' and noting (B.20), yields
X =C'JCX, (B.24)
which being compared with the proper orthochronous Lorentz transformation X = GX gives
G=cC'JC. (B.25)
Now, letting
Gl G, G G
G := G G G5 G , (B.26)

G Gg G G
Gl G G G
and then substituting Eq. (B.23) for C™', Eq. (B.18) for J and Eq. (B.21) for C into Eq. (B.25), we obtain
each term in G as follows:

Gl = % (ad + da + be + cb) — d(al) — b(cl) —c(bl) —a(dl) =a-d+b-c, (B.27)
G = %(a& —da + cb — be) + d(ai) + b(ci) — c(bi) — a(di)

= (a1ds — dyag + ¢1bs — bycs + dg x ag + by x ¢, (B.28)
G = % (db + bd — ca — ac), (B.29)
G} :%(dl_)—kb(_i—i-cﬁ—kaé), (B.30)

G = %(dﬁ —ad + cb — be) +i(aldl) + b(El) — ¢(bl) — d(al))
= Clbs + dlas — alds — blcs — ag X ds — bs X Cg, (B31)
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1, - S s . . =
G = 3 (ad + da — bc — cb) + i(a(di) + d(ai) — b(ci) — c(bi))
=(a-d—b-0)L; +2[a, ® d| — 2[b, ® ¢] + d1a, + a1dy — ¢|b, — by &, (B.32)
G: = %(df) —bd + ac — ca) = db; — bid; — cia, + ajc, + dg X by — ¢ x aj, (B.33)
G, = %(dl_) —bd +ca — ac) = dib, — bd; + cja, — ajc; +dg x by + ¢ ¥ ag, (B.34)
1 - _ _ _
G, = E(Cd +dc —ab — ba) —d(cl) + b(al) — c¢(dl) + a(bl) =c-d—a-b, (B.35)

G = %(bﬁ —ab + ed — de) + d(ci) — b(ai) — c(di) + a(bi)

= (c1dy — dye; — aybg + biag +dg x ¢, — b x )", (B.36)
G = 3 (dd — bb — cC + aa), (B.37)
|
G, = 3 (dd — bb + cc — aa), (B.38)
1 - _ _ _
G) = 3 (ab + ba + cd + d¢c) — d(c1) — b(al) —c(dl) —a(bl) =c-d+a-b, (B.39)
G = %(al_) — ba + cd — de) + d(&i) + b(ai) — c(di) — a(bi)
= (c1ds — dieg + arby — byag + dg x ¢ + by x a)’, (B.40)
1 - _
G = (dd +bb —ct — an), (B.41)
1 - -
G) = 3 (dd + bb + cc + aa). (B.42)

In above ® between two three-dimensional vectors denotes their tensor product, and as before [a; ® d]
and [bs ® ¢;] denote, respectively, the symmetric parts of the tensors a; ® dy and by ® cs.

Only Gi, G}, Gi, G;, G! and G} are calculable directly from the quaternions a, b, ¢ and d.
The other terms above should be supplemented with their second equalities for directly calculable
from the quaternions a, b, ¢ and d. We first derive the second equality in G;. Using the following for-
mulae:

X x (yxz)=(x*-2)y — (x*y")Z', (B.43)

X (YW xz)=y - (22 xx*) =2 (x* xXy°) (B.44)
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for three-dimensional vectors x°, y* and z°, we can prove that
ia(dix) + id(aix) = —a; - (dy x X*) 4+ a;dx* + a, - x°d — a; - dx°
—d; - (a; x x°) + djayx’ + d; - x*a; — d; - ax’ (B.45)
= a1dx’ + djax’ + 2[a; ® d|x° — 2a, - dyx°.
It thus follows that
ia(di) + id(ai) = a,d, + d,a, + 2[a, ® d|] — 2a, - d,]; (B.46)
and similarly,
—ib(ci) —ic(bi) = —b,& — c1bs — 2[b, @ ¢;] + 2b; - ¢L;. (B.47)
While the other terms in G can be computed as follows:
—iadi — idai + ibci + icbi = (2a;d; + 2a; - d, — 2byc; — 2b; - ¢)L;. (B.48)

Substituting Eqs. (B.46)—(B.48) into the first equality on the right-hand side of G;, we obtain the second
equality in Eq. (B.32) for G;.
There are

@l)=0, (bl)=0, (cl)=0, (dl)=0,

because 1 is a scalar; see the sentence follows Eq. (B.18). Thus, the second equalities of G|, G} and G} in
Egs. (B.27), (B.35) and (B.39) are proved.
By straightforward calculations we can prove that

i(ad — da) = 2(a,d, — da, + a, x d), (B.49)

i(cb — be) = 2(c1bs — bics + ¢ x by). (B.50)
Therefore the following equations hold:
i(da — ad + cb — be) = 2(dja, — a1d; — a, x d;) + 2(c1bs — bics + ¢ x by),

i(db — bd + ac — ca) = 2(d;b, — bydy — by x dy) + 2(a;c; — c1a5 — ¢ X aj),

i(db — bdca — ac) = 2(db; — bids — by x dy) + 2(c1a5 — aj¢, + ¢ X ay),

and the second equalities for G}, G; and Gj, as that appeared in Eqgs. (B.31), (B.33) and (B.34) are proved.
It remains to check the validity of the second equalities for Gl, Gs5 , and GS. Similarly, through some
calculations we have

d(aix) = d, x a; - X, (B.51)
and
d(ai) = d, x a, (B.52)

can be viewed as a row vector, since it linearly maps x to a scalar. With this formula the following relations
are obvious

b(ci) = b x ¢, ¢(bi) =¢; x by, a(di) = a, x dy,

d(ci) =d; x ¢, b(ai) =b, x a;, c¢(di) =¢, xd,, a(bi)=a, xb,.

Substituting these formulae into Egs. (B.28), (B.36) and (B.40), we obtain the second equalities for Gl,
Gf , and G? This completes the proof of Egs. (B.27)—(B.42).
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The above procedure for obtaining the spinor map from SL(2,H) onto SO, (5, 1) are illustrated in Fig. 1.
This map is from the group SL(2,H) onto the group SO,(5,1) and is a spinor map (two-valued represen-
tation) in the sense that the two spin transformations U map to the same proper orthochronous Lorentz
transformation G. The above formulae require to know U(¢). More definitely, we should know the time-
varying Lie algebra Q(¢), which render U(¢) obtainable through the integration of differential equation
U(7) = Q(¢)U(¢). Thus, we below derive the conversion formulae from Q € s/(2,H) to A € so(5,1), and
vice versa.

Appendix C. The explicit isomorphism of s/(2, H) and so(5,1)

Now, we attempt to convert the six-dimensional system (56) to a corresponding quaternion system with
dimensions two, that is

U(r) = Q()U(), 1)
U(0) = L, (C.2)
in which
_|r q
Q= {p 0] (C.3)

is a quaternionic matrix, subject to Sca(r + 0) = 0. The conversion relation is indeed a Lie algebra iso-
morphism of s/(2,H) 3 Q onto so(5,1) > A.

Parametrizing the spin transformation U € SL(2, H)

H(t) = U()H(0)T' (1), (C4)

differentiating Eq. (C.4) with respect to ¢, and using Eq. (C.1) we thus obtain

X r xt X xt X r p

X :{ qH an H_ P (C.5)
X p o]|x «x X x q o

It can be written as

Xt xT(r+7)+qx+Xq

X _ x;q+xj]:)+ri+i(_j (C.6)

X X'p+xq+ ox + xr

En x (04 0)+px + xp

From Eq. (B.12) it follows that
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Substituting these equations into Eq. (C.6) yields

x* [ x"(r+T) 4 qx + X — 2(gx)

X | | xq+x"p+rx+ox—2(0x) )
X X'p+xq+ox+rx—2(rx) |’ :
X | x~ (0 +0) + px + px — 2(px)

which can be rearranged to

Eall r+1 q-—2(q q 0 xt
x| | p r+o-20 0 q X
x| | p 0 o+T—2(r q X (C3)
i I P P—2(p o+o]|x
Also parametrizing Eq. (B.17) as
[x* (1) x"(0)
X(t) x(0)
o | =901 3o | (C9)
x (1) x(0)
taking the time derivative of Eq. (C.9) and then using Eq. (C.9) again, we have
s xt
Xyt ¥ (C.10)
X X
| X~ X~
Comparing the above equation with Eq. (C.8) yields
r+r q—2(q q 0
sv1_ | p r+o-—2 0 q
JJ7 = p 0 0o+F-206 q | (C.11)
0 p p—2(p o+o

For the proper orthochronous Lorentz transformation G € SO,(5, 1), taking the time derivative of Eq.
(B.25), and using Egs. (56), (C.11) and (B.25) again, we obtain

r+r q-2(q q 0
1| P r+o-—2o 0 q
a=c'| 2 0 ori_2 4 |C (C.12)
0 p p—2(p o+o

Letting

A Ay Ais Ao
Asl Ass ASS AsO
A= , C.13
ds As As As (C13)
Aot Aoy Aos Ao
and then substituting Eq. (B.23) for C' and Eq. (B.21) for C into Eq. (C.12), we obtain each term in A as
follows:

—_—

A“: (l'+f+0+6>—<61>—<f1>, (C14)

2
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AIS:%(F—r—I—O—(_))—i—((_)i)—(fi), (C.15)
A= 0+p—a-1). (c16)
Am=%(p+ﬁ+q+fl), (C.17)
A :%(r—f+6—o)—'<61>+i<f1>7 (C.18)
Ay :%(r +T+o0+0)+i(oi) + i(ri), (C.19)
As=5(-p-ata) (€20
Aso:%(ﬁ—pﬂ—ti), (C.21)
A =2(a+a—p—p) - (@l + (1), (€22)
As=L(p—p+a—a)+ @+ (i, (€23)
A55:%(r+f+o+6), (C.24)
Asozé(r—kf—o—()), (C.25)
g =3 (p+p+a+a) - (al) - (D) (c26)
Aw=xla—a+p—p)+ (@) - (i), (ca7)
A05:%(r+f70—6), (C.28)
Aoozé(r+f+0+6). (C.29)

First, we note due to Sca(r 4+ o) = 0 that
r+r+o+o0=2Sca(r+o0) =0. (C.30)
It thus follows that 4ss = 4y = 0. Second, we show through some calculations that

i{0ix) + i{rix) = (05 + F;)x° (C.31)
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and thus,

i(01) + i(ri) = 05 + . (C.32)

Substituting Egs. (C.30) and (C.32) into Eq. (C.19) gives A, = 0, + ;. Now, by using

(o1) =0, (p1)=0, (q1)=0, (r1)=0,

(o) =0, (pi)y=0, (qi)=0, (ri)=0
on the other equations in Egs. (C.14)—-(C.29), and noting that

X + X = 2x' = 2Sca(x), x— X =2ix’ = 2iVec(x),
we eventually obtain

0 rsT_O;r p—q pitq,
05 — Iy 65+fs Ps+qs ps_qs
qi—p P —q 0 r—or |’ (C.33)
p+q pl—q rn—o 0

A=

The above formula enables us to obtain A from Q. It is easy to check that such A, satisfying Eq. (55), is
an element of the Lie algebra so(5,1).
In order to derive Q from A, we let

0 Al A5 Ay
—A;, A, As Ay

A= C.34
_AIS _1%;[‘5 0 ASO ( )

A]O AsO A50 0

by considering the 6x 6 real matrix A € so(5,1). In above A is a 3x3 skew—symmetric matrix function.
Multiplying Eq. (C.12) by C from the left-hand side, then substituting Eq. (C.34) for A and Eq. (B.21) for C
into the resultant, we obtain

r+7r  q—2(q q 0 0 0 1 1
p r+o—2(o 0 q 1 -1 0 O
p 0 o+r—2(r q 1 1 0 O
0 p p—-2(p o+0]|0 0O -1 1
0 0 1 1 0 Al Ais Ay
_ 1 —i 0 0 - AI s As,y AS5 AsO
Tl i 0 0| -4 AL 0 ds | (C35)
0 0 -1 1 Ay Ay As O
Expanding the above quaternion algebraic equation generates
T T
q+q i(q—q) F+F r+F Ao —Ais Ay —Ag Aso Aso
r+o —i(l‘ +o0+ 265) P—q pP+q . iAlS AﬂlrV — iAm A5 — iAS5 A — iAxO
o+r i(o+r+2r) p-—q p+q —iA;, AL 1Ay Ais+iAs Ay +iAg
P+p ip—p) “0-o0 ofo A +Ais Ay +Aj Aso —Aso

(C.36)
where (01) = —i0;, (Fi) = —if, (0l) =0, (ql) =0, (r1) =0, (pl) =0, (pi) = 0, and (qi) = 0 were used.
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From Eq. (C.36) we obtain

(C.37)

Q _ |:l' q:| 1 |:A50 + l(aXlal(Asg) + A]s) Ay —Ars + i(ASS — AS())

P o] 2| Ai+Ais+i(As+Ag) —As + i(axial(Ay) — Ayy) |’

in which axial (A,,) denotes the axial vector of A, that is, (axial(A)), = %e,- ik (Ags) 4> Where € is the Levi-

Civita permutation symbol. It is obvious that Q thus obtained is an element of s/(2,H). Formula (C.37)
enables us to obtain Q from A. Formulae (C.13) and (C.37) explicitly expressing the Lie algebras iso-
morphism of s/(2, H) and so(5, 1) are very important for further calculations. Both the Lie algebras s/(2, H)
and so(5, 1) have 15 independent parameters.
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